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Abstract—The dynamical users’ association with wireless ac-
cess points and the requirement for maximum network coverage
foster the challenge of providing energy efficiency alongside
network availability for large-scale wireless networks. This paper
proposes an access-point provisioning strategy based on a multi-
objective optimization heuristic. The heuristic purposes are
maximizing coverage, ensuring high network availability, and
minimizing the number of active access points, while improves
energy efficiency. We evaluate our proposal by simulating a
connected component of the Universidade Federal Fluminense
(UFF - Brazil) wireless network, comprising 363 access points
in a university campus. The simulation considers actual flows
and features of users’ association to the network. The results
show that the best performing strategy is a greedy heuristic,
which activates access points with the most significant number
of potential neighbors that are not active. Our proposal implies
2% of unserved users while activating only 23% of the access
points, ensuring high availability and energy efficiency.

Index Terms—Energy Efficiency, Availability, Wireless Net-
work, Smart Campus

I. INTRODUCTION

In 2023 more than 70% of the world’s population will have
a mobile connection, and the connection bandwidth of mobile
devices will triple [1]. Furthermore, according to Cisco’s
annual report [1], global mobile data traffic for business will
grow sixfold from 2017 to 2022, at a yearly growth rate of
42%, with the number of Wi-Fi access points growing fourfold
from 2018 to 2023. In parallel, the energy expenditure on data
transmission decreases on average by half every two years
in developed countries [2]. However, digitalization raises the
requirement for greater energy use, which ultimately hampers
the effect of energy consumption optimization [3].

Reducing energy waste is an essential factor in the sus-
tainable use of resources. However, this reduction must not
affect economic development [3]. The inference of data usage
patterns in wireless networks allows defining preventive and
energy-saving measures. In this sense, this paper proposes
and simulates three different approaches for optimizing access
points (AP) usage without loss of quality of service and
connectivity. We calculate the wireless network usage patterns
to identify the demand of each access point and thus make
an optimized usage prediction. The optimization considers
network idle time and exploits the usage patterns of the

wireless network of the Universidade Federal Fluminense
(UFF) in Brazil.

This paper proposes a strategy for optimizing the number
of active APs in a large-scale wireless network. We generate a
dataset correlating flow statistics, from wireless network users,
with features from the APs with which they are associate.
From the dataset, it is possible to extract clusters of APs
with similar coverage areas to finally identify which APs
are essential at every moment of each day of the week in
each network’s location. To this end, the proposed approach
relies on a NetFlow flow statistics data collection, a wireless
interface data collection module for the network APs, a
data correlation module, and, finally, an AP processing and
optimizing module.

We aim to address the Wi-Fi network idleness problem as
reported by Apostolo et al. [4]. Examples of energy-saving
optimization are in the literature. Lyu et al. [5] uses load
prediction and network usage pattern data to turn off APs for
the predicted idle time. Manweiler et al. analyze the usage
time of each cellular client on the APs using a support vector
machine (SVM) [6]. However, these methods are not enough
to provide the required quality of service to the users in the
network. When considering a large-scale and dynamic wireless
network, using only one method would impair the quality of
service for the clients [4]. The usage prediction method applied
by Lyu et al. [5] allows identifying patterns and their variations
over time. Additionally, a new procedure for shutting down
initially active APs is necessary to optimize network operation,
thus ensuring a network with energy efficiency and high
connectivity standards.

The remainder of the paper is organized as follows. Sec-
tion II discusses the related works. Section III presents the
method used for data collection. The unsupervised clustering
approach is exposed in Sectionr̃efsec:algorithm. The proposal
is evaluated in the scenario of a real large-scale wireless
network and, the results are discussed in Section V. Section VI
concludes the paper.

II. RELATED WORK

Apostolo et al. [4] use data collected during six months from
the wireless network of the Universidade Federal Fluminense
(UFF - Brazil) to predict idle periods of the network. Through



machine learning methods, the authors classify and find long
periods of idleness in several access points (APs) of the
university. The work aims to reduce these idle periods without
harming the efficiency of the network.

Manweiler et al. propose a system for predicting the perma-
nence time of clients in wireless APs [6]. The central idea of
the system is to learn signatures from an initial set of clients
on the AP and then infer the dwell time of each client in its
vicinity. The prediction uses multiple sensors on the clients’
devices, generating a data matrix and passing it to a support
vector machine (SVM) classifier that separates the clients into
predetermined behavior classes. The system generates these
predictions serially. The paper uses an estimation of idle time
to disconnect inactive users from the network.

The Internet of Things (IoT), Big Data, and artificial intelli-
gence provide the basis for Smart Cities. This scenario presents
no difference at the university level, where the growth of the
Smart Campus concept has been benefiting universities world-
wide, not only in the technological area but also in improving
the campus life quality. Uskov et al. [7] perform a comparison
of a Smart Campus with a traditional campus demonstrating
the need for innovation in this environment. Thus, one of
these forms of innovation would be through intelligent systems
capable of optimizing the quality of services in university
campi. Aiming at the smart campus, we propose an approach
to saving energy in the university wireless network, using a
system that monitors the network APs and decides which ones
should be activated or deactivated.

Lyu et al. [5] propose an intelligent scheme for dynamic
controlling of APs in large-scale networks with a focus on
energy saving. The adopted strategy uses the prediction of the
APs load based on the network’s data collected during two
months (APs load, data traffic per AP, among others). The
proposal performs a prediction every 24h and verifies periods
when the network APs are idle without any user connection.
If they remain idle for some time greater than or equal to a
predefined threshold, these access points are deactivated until
the scheduled time for a new user connection.

Chanak et al. [8] present a novel green, energy-
consumption-aware clustering-based routing algorithm to pre-
vent the premature death of dense, large-scale wireless sensor
networks. The proposed scheme classifies deployed nodes into
three different categories, and after classifying, organizes sen-
sor nodes into distinct clusters. For this, a distributed clustering
algorithm, which maintains the leaders of the clusters, cluster
heads (CHs), for a certain time, is used to avoid the frequent
CH selection process. A routing algorithm is also applied to
calculate the performance load of each CH by dividing the
overhead across the routing node.

Ahamad et al. [9] propose an approach to extend the lifetime
of wireless sensor networks (WSN) using fuzzy logic, based
on the selection of cluster heads, which provides a non-
probabilistic approach. The approach uses two fuzzy variables:
distance from the base station and residual energy of the
sensor nodes. It works in scenarios with range overlap and
deals with the problem of cluster area selection. The idea

of the proposed approach is to divide the whole area into
small subareas of equal size, apply fuzzy variables and select
the best cluster head for each area. Whenever necessary, the
approach performs a new evaluation to select new cluster
heads. Similarly, Fermino and Maores propose a physical
medium access control protocol that targets energy efficiency
by reducing control packet overload in multi-channel and
homogeneous sensor wireless networks [10]. Their proposal
is a cross-layer approach that decreases the amount of control
data in the network while maintaining the quality of data
available for structure and route maintenance.

Miranda Jr. et al. propose an analysis to classify the
best choice of a recurrent neural network (RNN), based on
a simplified network simulation and metrics of loss, jitter,
latency, and throughput. The authors test the recurrent neural
networks Gated Recurrent Unit (GRU) and Long Short Term
Memory (LSTM) to compare the best efficiency of network
usage with network training and prediction. The GRU RNN
performed best because it was the simplest and, requiring less
memory, converged first to the trained model with the smallest
discrepancy [11].

Capanema et al. uses a Recurrent Neural Network to fore-
cast network usage [12]. They use an algorithm for collecting
and analyzing usage probability at each hour and the type of
day in the week. They also perform a routine analysis based
on times and weekday types to fill in the sparse data. The
data are stored in vectors making up four matrices that form
the input of the neural network. The Multi-Factor Attention
Recurrent Neural Network (MFA-RNN) is capable of multi-
factor learning. It uses the embedding layers, Gated Recurrent
Units (GRU), and the Multi-Head Self-Attention (MHSA)
layer. The network uses the dropout technique between layers
to prevent the model from being tied to the scenario in which
it was trained. The vector’s density and the layers’ order
define the model as effective and enable the model to consider
multiple factors.

The main contribution of this paper is the energy optimiza-
tion and utilization of the network without loss of service
availability to users. As seen in previous papers, predicting
network behavior is important to provide a capacity analysis
and guide adopted metrics in the networks.

III. DATA COLLECTION AND NETWORK DESCRIPTION

The institutional wireless network of the Universidade
Federal Fluminense (UFF), located in the campus of Praia
Vermelha, was selected to provide the data on the usage pattern
of users [13]. The network counts with 363 access points
distributed across the campus in a non-uniform manner. In
the network, access points constantly remain active, being an
ideal environment for applying methods to reduce unneces-
sary energy expenditures. The collected data aims to provide
user’s usage patterns at different times of the day and better
understand actual demand.

We deploy the NetFlow tool to collect the raw data that
compose the dataset concerning the flows in the APs. The
generated dataset contains all client flows and associations



TABLE I
FEATURES FROM THE DATASET GENERATED BY THE CAPTURED FLOWS IN THE WIRELESS NETWORK OF THE UNIVERSIDADE FEDERAL FLUMINENSE

(UFF, BRAZIL). FEATURES GENERATED BY ENRICHING FLOWS EXTRACTED BY THE NETFLOW APPLICATION WITH NETWORK LOG RECORDS.

Features Features’ definition
packets-forward Number of packets sent by a specific AP.

packets-backward Number of packets received by a specific AP.
bytes-forward Number of bytes sent by a specific AP.

bytes-backward Number of bytes received by a specific AP.
sTime-forward Moment when a certain client requested a connection with an AP.

dur+msec-forward Duration of a client connection in seconds.
mac-sta MAC address of a connected client.

ap Identifier of the AP.
clients Number of clients connected to a specific AP.

between clients and APs. We consider data for one week
of network monitoring. Table I shows the features of the
dataset for the collected data from all APs. The “sTime-
forward” feature indicates the time at which the client ordered
a flow through the indicated AP (”AP” characteristic). The
“dur+msec-forward” feature indicates the number of seconds
referring to the flow duration. “Mac-sta” indicates the MAC
address of a client device that established the association with
the access point, and, “clients”, the number of clients associ-
ated with the same AP at the time of the flow. The “Packets-
forward” and “bytes-forward” characteristics are respectively
the number of packets sent and the number of bytes sent,
as well as “packets-backward” and “bytes-backward” are the
number of packets and bytes received. This dataset enables us
to identify patterns of use of access points and characterize
the network.

We also developed a simulator using the Python language
able to reproduce the network behavior. We perform simula-
tions through the reproduction of the events collected in the
network dataset. Each simulation scenario aimed to identify
idle access points and the variation of user quantity in the
network throughout the day. Data analysis demonstrates a
high-demand network usage between 11 : 00h and 15 : 00h.
It also indicates idleness between 22 : 00h and 5 : 00h. These
periods coincide with the activity times of the campus where
hosts the network. Through this result, we can identify long
periods in which the APs do not have users associated with,
resulting in unnecessary power consumption. Based on this
usage pattern, we propose a new model of APs’ management,
capable of reducing energy consumption in periods with low
or no demand.

IV. HIGH AVAILABILITY AND EFFICIENCY STRATEGY

The proposed strategy aims to reduce energy consumption
through efficient management of APs activity. Since it is a
large-scale network, keeping all access points constantly active
results in high energy consumption. The proposed strategy,
shown in Figure 1, provides a service capable of minimizing
the number of active access points, i.e., powered-on access
points.

Initially, all access points on the network are switched off.
After this, an initial set of APs that will be activated, called the
base APs’ set, is selected. The initial set of APs is important
because the choice directly impacts the APs that will then be
turned on or off. After selecting the initial APs, the system
is ready to analyze users’ association attempts and identify
which AP each user is more likely to associate. The analysis
is based on three information: (I) preferred AP, that is, the
access point whose user can establish an association with the
best possible signal, (II) the APs that are currently connected,
and (III) the availability of each AP to receive new users.

After evaluating the associations for a period, the strategy
may take two actions concerning the APs. First, it verifies
the possibility of relocating clients based on the quality of
the association and the availability of active APs without
hampering other clients’ quality of service. New APs may
also be activated to meet the demand for clients that join the
network. The second strategy identifies which APs do not have
associated clients and shut them down. After this step, the
process of analyzing the clients’ associations restarts. These
steps are detailed following. We divide the strategy into two
parts: Selection of the base APs’ set, which are the sets of
initially active APs; and Management of APs, which decides
the access points to activate or deactivate according to the
demand of clients’ associations to the network.

Algoritmo 1: Activation of only the APs that counts
with the maximum number of neighbors in the net-
work.
graph aux← sorted(graph, key = lambda node :
len(node.neighbors))

tam← len(graph aux)− 1
greaterqty ← len(graph aux[size− 1].neighbors)
while size ≥ 0 and
len(graph aux[tam].neighbors) = greaterqty do

graph aux[size].activateAP ()
size− = 1

end



Fig. 1. Flowchart of the proposed strategy. The strategy assumes knowledge of the wireless network topology. The strategy works with an initial base APs’
set to turn on, and during network monitoring, as new clients connect to the wireless network, APs are turned on and off on demand.

A. Selection of the base APs’ set

In the first step, the strategy selects which access points will
compose the base APs set. The strategy considers the prior
knowledge of the wireless network target graph. Selection
criteria significantly impact the formation of sets, as these
sets directly influence how APs’ management behaviors while
operating the network. Three approaches to the selection
of APs are proposed: (I) selection based on APs with the
maximum number of neighbors (MNN); (II) selection based on
non-neighboring APs, prioritizing number of neighbors (NnAP
PNN); and (III) clique-based selection in the wireless network
topology graph.

1) APs with the maximum number of neighbors: This
approach has the most straightforward logic but presents the
most significant number of initially active APs. An auxiliary
vector contains all nodes of the graph of the network, and then
the vector is ordered according to the number of neighbors
of each node. Thus, the last element of this vector has the
maximum number of neighbors among the graph nodes. Then,
we selected all graph nodes that also have the same maximum
number of neighbors. According to the example of Figure 2(a),
the AP with the maximum number of neighbors has four
neighbors. In this case, all APs that have four neighbors are
selected as the base APs’ set. The Algorithm 1 presents the
selection used within this approach.

2) Non-neighboring APs, prioritizing number of neighbors:
In this approach, we create an auxiliary vector containing all
the nodes of the graph ordered by the number of neighbors of
each node. The vector is then traversed in descending order of
the number of neighbors of each node, selecting all nodes that
are not neighbors of previously selected nodes. The selected
nodes compose the base APs’ set. Figure 2(b) presents an
example of selection using the approach. The Algorithm 2
describes how the operation.

3) Representing APs from Network Graph Cliques: In this
approach, we seek network graph cliques. Then, an AP is
selected for each clique. The selected APs have the largest
number of neighbors and are not neighbors of a previously
selected AP. Figure 2(c) shows the representation of this
approach. The graph has three cliques, then three active APs
that are not neighbors to each other. The Algorithm 3 presents
the clique approach, in which the graph is separated into
vectors representing the cliques containing the nodes that make

Algoritmo 2: Activation of APs that do not have
current active neighbors, prioritizing those with the
more neighbors. We analyze all APs in descending
order of the number of neighbors, being activated
as long as none of their neighbors has already been
activated.
graph aux← sorted(graph, key = lambda node :
len(node.neighbors))

size← len(graph aux)− 1
while size > 0 do

node← graph aux[size]
no active neighbor ← True
for neighbor ∈ node.neighbors do

if neighbor.status then
no active neighbor ← False
break

end
end
if no active neighbor then

node.activateAP ()
end
size− = 1

end

up the corresponding clique. All cliques are checked, and each
node goes through a verification.

The strategy orders the node vector (cliques) relative to the
number of neighbors. It traverses the vector verifying that the
candidate node is not neighboring any node that is already
active. If none of its neighbors are active, the node is a
candidate to be activated. Otherwise, the following node with
more neighbors is verified. The underlying idea of activating
only one node in each clique is that the clique represents a
coverage area that overlaps with all those access points. Thus,
an active node in the clique tends to cover an approximately
equal area to the entire clique.

B. Network Management

To minimize energy expenditure, APs management consists
of turning on new APs only whenever it is necessary. The
need to activate a new AP is represented when an AP receives
an association request of new clients but is already with its
maximum capacity. Besides, turning off the APs whenever
possible occurs when no user is associated with them, also



Algoritmo 3: Activation of APs that are in graph
cliques. One AP of each clique represents the clique
present in the network graph and, then, is activated in
the base APs’ set.

Function find ap to activate(list nodes)
list nodes aux← sorted(list nodes, key =
lambda node : len(node.neighbors))
size← len(list nodes)− 1
checker ← False
while size > 0 do

node← list nodes aux[size]
for neighbor ∈ node.neighbors do

if neighbor.status == True then
checker ← True

end
end
if checker == False then

returnnode
end
else

size− = 1
checker ← False

end
end
ret = lista nodes aux[len(lista nodes)− 1]
return ret

cliques← seek cliques(graph)
for nodes ∈ cliques do

to activate← find ap to activate(nodes)
to activate.status← True

end

valuing the quality of the signal delivered to the user. We
organize the APs management into two cases: activating new
APs and shutting down APs.

1) Activating New APs: New access points can be con-
nected in two distinct scenarios: (I) if a client’s preferred
access point is deactivated and its neighbors unavailable, or
(II) if the preferred AP is at maximum capacity and one of its
neighbors is disconnected.

If the preferred AP is disconnected, the client must connect
to a neighboring AP in the first case. To do this, the client
verifies, considering the number of associated users, states,
and neighbors on the neighboring APs to find the best option.
The approach manages the user association with the network
to choose the neighbor with the largest number of associated
clients, but without reaching the maximum number of active
clients. The client preferred AP1 is activated if all neighbors
have as many associations or are disconnected. The maximum
number of associations supported by an access point is consid-
ered equal to 15 active clients. Reis et al. show that for access
points with more than 15 associated and active clients imply
a drop in the quality of service experienced by the users [13].

1The prefered AP is choosen according to the previous usage pattern of
each client in the network.

If the preferred AP is full, its neighboring APs are checked
to identify which one has the largest number of neighbors. If
all neighbors are unavailable, another check occurs to identify
if there are any deactivated neighbors, and from among the de-
activated neighbors, which one has more neighbors. Therefore,
this neighbor is chosen to be activated.

2) Shutting Down APs: The only situation that an access
point can be deactivated is if it has no longer any active user
association. Therefore, we adopt a strategy to migrate active
users from an underloaded access point, shut down the AP,
and keep these users connected to the network. The strategy
is to force the distribution of users connected to an AP to
others, allowing the underloaded AP to be unassociated and
shut down without impairing users’ access to the network2.

The first step to the reorganization is the analysis of all
network access points that are active. Then, the strategy checks
whether APs have active neighbors in which the total number
of clients’ associations, added to the number of incoming
associations from the underload AP, does not exceed the
allowed threshold of associations per AP. When a neighbor
with these characteristics is found, the strategy checks whether
it or its neighbors are the preferred user in migration; then,
the user is relocated. The preferred AP is the one that presents
a higher quality signal to a relocated user. If, after these
operations, the underloaded AP has no longer any active client
association, it shuts down.

V. EXPERIMENTAL RESULTS

In this section, we compare the performances of the three
proposed approaches with different metrics. We obtained the
data related to the operation of each approach through the use
of a simulator developed in Python programming language.
The simulator can replicate the behavior of the network in the
proposed strategies.

We simulated four scenarios, testing the network in its
normal operation to validate the simulator, and the three pro-
posed approaches. The simulation considered the information
present in the obtained dataset, which contains the monitored
data from 357 APs3 of the Universidade Federal Fluminense
network over approximately 9 days.

The metrics used in comparing the approaches were: num-
ber of activated APs, number of overloaded APs, amount of
bytes backward, amount of bytes forward, number of unserved
users, and number of valid users in the network.

A. Number of activated APs

In Figure 3(a) the“Free network” scenario represents the
network with no changes. In this scenario, the activated
access points are all 357 access points in the network. The
data obtained in the“Pure Network” scenario is the baseline
for comparison and validation of the simulator. The MNN
approach has the least number of activated APs, keeping

2The procedure for migrating users between access points is outside the
scope of this paper.

3Although the network contains 363 access points, six access points were
unavailable at the time of data collection.



(a) APs selection approach with the maximum number of neighbors.
APs that have 4 neighbors, the maximum number of neighbors, are
connected.

(b) [ Non-neighboring APs selection approach, prioritizing those with
the highest number of neighbors. APs are connected, one by one, from
which they have the largest number of neighbors to the smallest, as long
as they are not neighbors of any that have been connected before.

(c) Most representative clique selection approach. Graph cliques we
identified, and one AP of each, which is not the neighbor of an AP
that is connected, is connected, as long as no other AP within the same
clique has ever been connected.

Fig. 2. Examples of each proposed approach to select ing the base Set of
APs. Representation of aps connected in green.

approximately 0.6% of activated APs during the simulation
period among the compared approaches. Thus, presenting
higher energy savings. Meanwhile, the Clique and NnAP PNN
scenarios exhibit 19% and 23% of the network APs turned on,
respectively. The second-best approach is the Clique approach
with approximately 18% less connected access points than the
NnAP PNN approach.

B. Number of overloaded APs

The average number of overloaded access points in the
network is very similar in almost all simulations. The only
approach that has a relevant difference in the average is the
MNN approach with 0.6 Aps overloaded per hour as shown
in Figure 3(b). While the maximum number of overloaded
APs in the other simulations is 6, in the MNN simulation, this
number decreases to 2.

C. Amount of bytes backward and bytes forward

The metric of bytes forward and backward represents the
throughput of traffic on the network. A high-throughput means
that the network is serving clients efficiently and satisfactorily.
A low-throughput, by contrast, represents that too many clients
are unable to join the network or that the APs are overloaded.

In the Figures 3(c) and 3(d) one can observe the amount
of bytes trafficked in the simulated period, both backwards
and forwards. These values show similar proportions when
compared. For the bytes backward, the worst result is in the

MNN scenario with 27% of the value compared to the simu-
lation referring to the Free Network scenario with all access
points turned on. With slightly better results, approaching the
network with all access points on, the cliques scenario presents
53% of the number of bytes backward. Finally, the NnAP PNN
scenario with 99% of the number of bytes backward compared
to the amount of the Free Network scenario presents the best
results among the proposed approaches.

Analogously to the bytes backward, the best result obtained
for the bytes forward is in the NnAP PNN scenario with 98%
of the number of bytes forward in the Free Network. The
Cliques and MNN scenarios showed 58% and 27% of the
bytes forward, respectively. The MNN scenario presents the
most distant values from the Free Network scenario as well as
in the comparison of bytes backward, being the worst result
among the proposed approaches.

D. Number of unserved users and valid users in the network

Along with the number of APs connected, it is important
to observe the number of unserved users. This metric allows
verifying whether the approach can meet the demand of users
trying to associate access points on the network, in addition
to performing well in energy efficiency. In Figure 4(a) the
MNN scenario presents the worst performance among the
proposed approaches with 265 unserved users in the simulated
period, considering that the fewer unserved users, the better
the network availability. When comparing the other scenarios,
Clique and NnAP PNN, it is visible that even though both
have much better results than the MNN scenario, there is still a
considerable difference between their results. While the Clique
scenario presents 126 unserved users, the NnAP PNN scenario
presents a total of only 14 unserved users over the simulated
period. The NnAP PNN scenario obtained 7x less than the
Cliques scenario, making the NnAP PNN scenario present the
best results among those compared.

In parallel to the number of unserved users, we can observe
this same by comparing the metric of the number of valid
users in the network per hour, represented in Figure 4(b).
Valid users are those that are active and associated with
access points. Thus, as in the previous analysis, the worst
results are observed in the MNN scenario, which shows only
25% of users attempting to connect to the network as valid.
The best results remain between the cliques and NnAP PNN
scenarios, with the Cliques scenario presenting 94% of users
and averaging approximately 290.76 users per hour, while
the NnAP PNN scenario, which has the best result, showing
approximately 98% of users on the network, and averaging
304.5 users per hour.

VI. CONCLUSION

In this paper, we proposed a strategy for managing access
points of a large-scale network to maintain the level of network
availability and achieving better energy efficiency. The strategy
consists of managing the network’s access points so that they
are turned off when there is no user associated with them.
The proposed strategy uses a technique of user relocation,



(a) Number of activated APs to the network over the period of approx-
imately 8 days.

(b) Number of overloaded APs in the network over the period of
approximately 8 days.

(c) Total amount of bytes backward over time in a period of approxi-
mately 8 days.

(d) Total amount of bytes forward over time in a period of approximately
8 days.

Fig. 3. Graphical representation of the amount of activated APs, number of overloaded APs, amount of bytes forward, and amount of bytes backward,
respectively, of each proposed approach, including the network without the interference of any of the approaches.

(a) Total number of unserved users overtime over a period of approxi-
mately 8 days.

(b) Number of valid users in the network over the period of approxi-
mately 8 days.

Fig. 4. The NnAP PNN approach introduces the least number of unserved users. The number of valid users is similar between the network without interference
and in the Clique and node selection approaches without active neighbors (NnAP PNN).

in which users that are already connected are relocated to
other access points to reduce the amount of simultaneously
connected access points to obtain a more efficient energy
consumption. We tested three approaches for selecting the
sets of initially connected access points: activate APs with
the maximum number of neighbors, activate non-neighbor
APs, prioritizing the number of neighbors, and activate APs
representing cliques in the network graph. The proposed

approaches showed improvements in the energy efficiency
of the network when compared to its normal operation. The
approaches showed many valid users in the network exceeding
90% of the users that were attempted to associate to the
network. The Cliques approach, kept only 19% APs connected,
while the Non-neighbor APs approach, prioritizing to connect
APs with the higher number of neighbors, presented a 23%
higher number of connected APs than the previous approach,



but obtained a better result for the total number of users served,
reaching 98% of the total users in the network.

As future work, we intend to explore more energy-saving
approaches by reducing the number of unserved users. Among
the possible alternatives, explore approaches that use clusters
and the use of recurrent neural networks.
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