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Abstract: The growing convergence of various services characterizes wireless access networks. There-
fore, there is a high demand for provisioning the spectrum to serve simultaneous users demanding
high throughput rates. The load prediction at each access point is mandatory to allocate resources
and to assist sophisticated network designs. However, the load at each access point varies according
to the number of connected devices and traffic characteristics. In this paper, we propose a load
estimation strategy based on a Markov’s Chain to predict the number of devices connected to each
access point on the wireless network, and we apply an unsupervised machine learning model to
identify traffic profiles. The main goals are to determine traffic patterns and overload projections in
the wireless network, efficiently scale the network, and provide a knowledge base for security tools.
We evaluate the proposal in a large-scale university network, with 670 access points spread over a
wide area. The collected data is de-identified, and data processing occurs in the cloud. The evaluation
results show that the proposal predicts the number of connected devices with 90% accuracy and
discriminates five different user-traffic profiles on the load of the wireless network.

Keywords: load forecasting; network profiling; machine learning

1. Introduction

Mobile and Wi-Fi networks are increasingly ubiquitous and have constant and signifi-
cant growth in their adoption. The structures of these networks grew 71% in 2017, and at
the end of that same year, the volume of data transferred per month reached 11.5 million
exabytes. The accumulated growth is 17 times between 2014 and 2019 [1], being strongly
driven by the widespread adoption of 4G and 5G technologies. However, there is still a
global trend of data migration to infrastructure Wi-Fi networks that are variants of the Wi-Fi
standard (IEEE 802.11). The load on these networks will exceed 100 exabytes a month by
2022, making Wi-Fi networks responsible for more than 59% of mobile traffic. IEEE 802.11
wireless (Wi-Fi) networks become present in many environments [2]. An example that
illustrates the trend is the use of free Wi-Fi networks in the New York City subway, one of
the largest subway networks in the world, where users migrate from the cellular mobile
data network to the provided infrastructure Wi-Fi network.

Wireless networks were initially used for exchanging messages, quick queries, and
accessing websites. Today, they are widely used for multimedia applications such as
voice calls, social networking, and video access, encompassing various usage profiles.
It is estimated that, by 2022, 79% of wireless network traffic will be video [1], requiring
network adaptation to the new demand. The load increase in Wi-Fi networks requires
the consequent increase in network capacity and availability. Therefore, it is necessary
to design their size properly to accommodate the number of users and distinct profiles.
However, network dimensioning and predicting the required traffic are challenging tasks.
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The popularization and variety of uses of wireless networks foster the growth in the
number of access points in confined areas and, thus, result in increased interference between
neighboring access points [3]. In addition, a more significant number of access points
contributes to clients constantly changing the access point to which they are connected [4].
These characteristics make it even more challenging to predict the network size and
expected traffic correctly. This scenario encourages the creation of intelligent network traffic
analysis mechanisms that are aware of the expected users’ access profile. Furthermore,
intelligent mechanisms must provide accurate data to properly size the network and the
base for detecting anomalous behaviors in the network [5].

This paper proposes a strategy for identifying user-traffic profiles in wireless networks
and predicting the workload on each of the access points. The goal is to scale the network
appropriately, according to the users’ profile of each location and according to the number
of users in each access point. The proposed strategy is based on an architecture for data
capture on monitored networks, and processing for profile identification and workload fore-
casting is outsourced to a cloud computing environment. We model the transition of users
among access points as a Markovian process. Thus, we use first-order Markov chains to pre-
dict the expected load on each access point [6], according to the users’ profile at any given
time. In turn, the usage profile is obtained from the analysis of network traffic using the K-
means unsupervised machine learning algorithm for clustering. Aggregation into profiles
contributes to data de-identification, in compliance with data law regulations such as the
Brazilian General Data Protection Law (Lei Geral de Proteção de Dados—LGPD) (Available in
Portuguese at http://www.planalto.gov.br/ccivil_03/_ato2015-2018/2018/lei/l13709.htm.
Accessed on 11 November 2021) and European General Data Protection Regulation (GDPR)
(Available at https://ec.europa.eu/info/law/law-topic/data-protection/data-protection-
eu_en. Accessed on 11 November 2021). The extracted information allows the proposed
strategy to size the network, ensuring availability properly. In addition, compliance with
user privacy laws is mandatory for the proposal since the data processing occurs in a
commercial, public cloud environment (We run the proposed strategy in the Amazon
Web Services (AWS) cloud to obtain the results available in this paper.). The proposed
strategy generates models that also detect anomalies in the network and enable intelligent
applications, such as caching at the network edge and personalized service performance
guarantees. Furthermore, the proposal allows the implementation of control tools that
improve the efficiency and security of the network. For example, it is possible to block net-
work flows that transgress the expected pattern, preventing the availability of the network
for other users from being affected.

We analyze our proposal using traffic data obtained from the campi wireless network
of the Universidade Federal Fluminense, which is one of the biggest public universities
in Brazil, considering number of students. The network is composed of 670 access points
distributed throughout 16 different university campi, powering more than 90 buildings,
capable of serving more than 60,000 unique users with access peaks of more than 5000 si-
multaneous connected users. The considered data compress one-week traffic and represent
the communication flows between clients on the wireless network and Internet services for
one campus, comprising 363 access points. The collected data were de-identified to ensure
users’ privacy. The obtained results show that, in the analyzed network, it is possible to
classify users into five different users’ profiles and that the proposed strategy predicts
the workload on access points with an average accuracy of 90%, considering a confidence
interval of 90%. In summary, the contribution of the paper is three-fold:

• Modeling large-scale wireless network access as a Markovian chain;
• Predicting the workload of each network access point in a timely, resource-efficient,

and private way using a commercial cloud infrastructure;
• Identifying and forecasting accurate users’ behaviors that are important to plan net-

work infrastructure expansion and maintenance.

The remainder of this paper is organized as follows. Section 2 discusses related work.
Section 3 introduces the forecasting problem and proposes the strategy for load forecasting

http://www.planalto.gov.br/ccivil_03/_ato2015-2018/2018/lei/l13709.htm
https://ec.europa.eu/info/law/law-topic/data-protection/data-protection-eu_en
https://ec.europa.eu/info/law/law-topic/data-protection/data-protection-eu_en
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and profiling. The strategy is evaluated in a real large-scale wireless network scenario and
the results are presented in Section 4. Finally, Section 5 concludes the paper and points out
future work.

2. Related Works

Previous works focus on analyzing the connection of new devices in wireless networks [7],
identifying performance bottlenecks in access point [3], characterizing the applications’ data
traffic profile [8,9], analyzing applications’ performance in constrained scenarios [10,11], or
are based on feature selection algorithms for detecting and resolving security incidents in
real-time [12]. User profile’s characterization in wireless networks and adequately dimen-
sion the network to accommodate users have a fundamental role in the quality of experience
of the network. Oliveira et al. investigate and classify user activities in university networks
and urban networks, concluding that there is a linear correlation between the number of
sessions and the number of access points in the network [10]. However, Reis et al. show
that users keep connected at few network access points throughout the day even if there is
a substantially high number of nearby access points [13]. The authors also show that the
interference generated by each network depends on the workload to which the network is
subjected. Biswals et al. show that monitoring wireless networks requires examining the
radio channel used by each Wi-Fi network [3] because channel usage may be low in com-
parison to other networks’ usage. Differently, we adopt a data collection model that follows
the approach of monitoring the flows in the network, consolidating them with metadata
about the device address and the access point to which each device associates [10].

Ghosh et al. perform the profile characterization based on the arrival of users in
the network and, therefore, combine static clustering with Poisson regression to model
the process of new device arrival in the wireless network [7]. Quian et al. consider
the applications, which users run in network, to characterize and to optimize network
traffic [8]. The authors propose a cross-layer approach to identify traffic signatures of
popular applications and optimize radio control communication for inefficient radio-layer
applications, reducing network bottlenecks. Shye et al. characterize the wireless network
usage by observing that mobile devices are more numerous, and each application generates
a distinct data consumption signature on the network [9]. In turn, our proposal considers
analyzing network flows through an unsupervised clustering to identify network users’
profiles and forecast usage at each access point based on these profiles. Lopes et al.
perform a similar approach focusing on security anomaly detection but using supervised
classification algorithms, which require a labeled dataset to train their mechanism [12].

Meireles et al. propose to offload vehicular network traffic to Wi-Fi standard access
points located on the vehicle paths [14]. The proposal relies on predicting the data rate
each access point can provide the vehicles. Thus, the authors collect spatially-indexed
performance measurements in a Wi-Fi-diverse vehicular environment and evaluate data-
rate forecasting algorithms that leverage real-time and historical mobility and performance
information. The proposed prediction algorithm is simple and relies on the arithmetic
mean of historical data rates observed over a window. The results show the forecasting
feasibility and reveal a trade-off between the extended range provided by 802.11n and
the higher data rates provided by 802.11ac and 802.11ad. However, the proposal only
handles the data-rate forecasting in contrast with our proposal that focuses on forecasting
the network load and the users’ profile.

Forecasting network workload involves predicting the user associations at each access
point. Lyu et al. use a Markov chain of K-order to predict the next access point to which
a device will connect, considering a series of k previous connections [15]. Differently,
in our work, we consider a first-order Markov chain because the goal is to determine
the probability of the device being associated with a particular access point and not to
define the probable track performed by a user. To validate the premise that the currently
connected access point only depends on the previous state and, consequently, to validate
the use of a first-order Markov chain, we consider an additional “not connected” state that
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describes the devices that are currently out of the network. Mattos et al. apply a similar
approach in state forecasting of software-defined network controllers based on the network
demands [16].

Marques et al. introduce network-load forecasting as an essential technique for
mobile network operators to achieve great accuracy on self-organizing networks [17].
The authors claim that network-load forecasting applies either numerical techniques or
artificial intelligence algorithms. Marques et al. deploy an Auto-Regressive Integrated
Moving Average (ARIMA) model to forecast the average number of users per hour in
a wireless hotspot located in a city public park, according to weather conditions. The
data analysis considers users’ access during a month (January 2017) and the average
daily city temperature. The proposal predicts users’ access for one week, using a month’s
data as historical. The authors evaluate the proposal feasibility and discuss seasonal
users’ behaviors. However, the authors neglect to evaluate the quality of their forecasting
quantitatively. Moreover, the proposal is limited to predicting the network load for a single
access point, whereas our proposal focuses on predicting the network load for all access
points in a large-scale wireless network.

Due to the complexity and the processing requirements for forecasting time series,
Son, Linh, and Dang propose a method that combines Autoregressive (AR) and Long
Short-Term Memory (LSTM) neural networks to forecast linear and non-linear components
of time series [18]. The authors evaluate their method over a dataset that contains the
number of times that each user accesses public Wi-Fi per day, and the proposal forecasts
the next 30 days’ data. The authors conclude that autoregressive models are good at
forecasting linear data, and LSTM performs better on non-linear data. Moreover, the
authors verify that the combined model outperforms ARIMA or LSTM exclusive models.
Similarly, Barbosa et al. propose to apply the Discrete Wavelet Transform to decompose
the time series of the entropy values of network traffic features into linear and non-linear
components and, then, apply ARIMA and LSTM to predict network users’ behavior [19].
Barbosa et al. show that the LSTM neural network provided low error in predicting both
linear and non-linear components, whereas ARIMA provided a lower upper-bounded
error than LSTM to the linear component. Moreover, the authors also claim that the linear
component expresses much of the data noise. Nevertheless, these proposals do not focus
on forecasting the number of connected users in each network access point. Instead, the
proposals focus on forecasting the entire network behavior.

Chatzoglou et al. extend the well-known AWID corpus (Available at https://icsdweb.
aegean.gr/awid/. Accessed on 11 November 2021) [20]. The AWID extension accounts
for sample traces of various attacks against the IEEE 802.1X Extensible Authentication
Protocol (EAP). The authors focus on enterprise-level networks because they provide
stronger security mechanisms, including Protected Management Frames (PMF), introduced
with the IEEE 802.11 W, and support for alternative network architectures. Although
Chatzoglou et al. characterize well-known attacks, e.g., deauthentication, disassociation,
(re)association and rogue access point, and new attacks, such as krack and kr00k, against
wireless networks, they do not envision to provide a dataset to study the well-behaved
users’ profile in the network.

3. Network Load Forecasting and Profile Identification Strategy

Analyzing network traffic for users’ profiling and load forecasting in large-scale
wireless networks is essential for network security because it enhances network availability.
Moreover, large-scale wireless networks are prone to various attacks against the IEEE
802.1X [20] and, thus, user profiling is also a valuable mechanism to identify misuse or
faulty behaviors in the network. However, accurate load forecasting is challenging due to
the [6]:

• Large volume of data originated from a large-scale network;
• Variety of data sources represented by the various access points and network users;
• Adaptability of the model to the executed network applications;

https://icsdweb.aegean.gr/awid/
https://icsdweb.aegean.gr/awid/
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• Variability of applications and uses of the network to which the load forecasting model
should anticipate proactively;

• Need for high-quality historic data to train or fit the model;
• Complexity of the proposed forecasting method that should be insignificant for time

and space;
• Data granularity with which the network usage is measured;
• Pattern length that is selected to fit the most popular patterns and behaviors in

the network.

The first challenge is data collection, performed at the geographically distributed
access points and network output routers. Access points store connection activity and client
association and disassociation activity, while outbound network routers gather network
traffic flow summaries. Thus, it is necessary to enrich each network traffic flow with the
correct access point to which the user is currently associated at the time of the occurring
flow, accomplished through recording data about associating and disassociating clients to
the access point. The enriched data occurs before processing the collected data. The second
challenge is data analysis, which requires large storage availability and high processing
power to train the machine learning algorithms and execute the forecasting models.

To accomplish data collection, we deployed NetFlow, developed by Cisco for routers
to monitor and standardize export information about the network flow statistics [21].
Outgoing network routers inspect the packets arriving on their interfaces and collect
statistics of the flows based on the 5-tuple information consisting of source and destination
IP addresses, transport protocol, and source and destination transport ports. The collected
data is periodically sent to a flow management device according to preconfigured timers.
The volume of network traffic analyzed in this paper is up to 3 gigabytes of data per
day and must be processed near real-time. The speed and volume of collected data is
a challenge for determining users’ profiles and load forecasting in a large-scale wireless
network, featuring a Big Data problem. In this paper, we propose to use a cloud processing
solution, which allows allocating computing resources on demand. The data is processed
as soon as they are collected, in near real-time. We also use the Spot server functionality
from the Amazon Web Services (Available at https://aws.amazon.com/ec2/spot/. Accessed
on 11 November 2021) cloud, which reduces costs by up to 90%, allowing us to create an
efficient and cost-effective tool [22]. We analyze one day in 32 min using a single server
with 8 processors, 32 GB of RAM, and a T4 Tensor Core with 16 GB of GPU memory.
The configuration reveals that the proposed strategy processes data in near real-time and
enables it to scale using more servers if needed by the network traffic volume.

The paper proposes a strategy for identifying users’ profiles in wireless networks and
forecasting the load on each access point. The main goal is to allow the network to be
adequately dimensioned according to the load based on the users’ profiles of each location.
The strategy deploys a mechanism that harmonizes data capture over the wireless network
and a cloud computing architecture. The collected data is associated with a unique random
identifier generated from a cryptographic function that acts upon the device’s MAC address
to ensure user privacy. This procedure ensures the data de-identification to protect users’
privacy. The strategy consists of 3 steps. In the first step, the goal is to obtain the expected
load on each access point. The second step identifies the users’ profiles existing in the
network. Finally, the expected users’ profiles and the predicted load at each access point
are identified in the third step. Therefore, the proposal consists of a private, agile, and
assertive strategy to estimate the load on each access point in the network according to the
network users’ profile.

Figure 1 presents the proposed strategy. The access points and edge routers send
the data to a central server. The central server sends data to the Amazon AWS cloud
environment using a Virtual Private Network (VPN). The AWS environment uses a data
ingestion service to send the raw data to Tier 1 (Tier is the nomenclature used in big data
projects for each stage of data storage in a decoupled stream of processing.). After storing
data in Tier 1, a processing service enriches the network flow data with the access-point

https://aws.amazon.com/ec2/spot/
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characteristics. The enriched data are transported to Tier 2 to feed the training of the
k-means clustering algorithm used to obtain the users’ profiles. We periodically re-train
the k-means model to adjust it for the data better. In parallel, the processing phase, called
Profile Calculation, generates the user’s profile for each network flow considering the
current k-mean method. Tier 3 stores the results for each network flow data grouped per
users’ profile. Finally, the enriched and classified-by-profile data input to the Markov
chain, which applies the proposed strategy to predict the probability of a user, from a given
profile, associates with each AP.

Figure 1. Diagram of the proposed strategy for users’ profile identification and load forecasting on the network. Data are
de-identified in the central server at the University, and the de-identified data are processed in the AWS cloud environment.

3.1. Model for Predicting the Expected Load on Each Access Point

The collected data analysis is done in time intervals called ∆t. In this interval, the
association of each user to the Access Points (AP) in the network is evaluated. A user who
does not perform any network communication in the period is in the “not associated” state
(AP0). The probability that a user switches from APi to APj in ∆t is calculated from the
collected data by evaluating the ratio between the number of association switches between
access points and the total number of association switches. The presence of the user flow
at a new access point indicates the migration of the user from one access point to another.
Our model assumptions are that users’ arrival follows a Poisson probability distribution,
and the user’s probability of migrating between access points only depends on the access
point with which the user is currently associated. Therefore, the current state depends
only on the previous state. Thus, the arrival of new users summed with the probability of
receiving a migrating user at an access point can be modeled by a non-stationary Poisson
process [7,23]. It is possible to model the transitions between APs as first-order Markov
chains. These transitions fill the Markov probability matrix. In this paper, the matrix TAP
shows the probability that a user migrates from APi to APj during the specific ∆t. The
matrix TAP dimensions are (N + 1)− times(N + 1), where N is the number of access points
in the wireless network, and each element tAP

ij represents the transition probability of a user
from APi to APj. The AP0 state is necessary to consider users that do not appear associated
with any access point in the considered interval and acts as a neighbor state to all others
since the user can connect to the network and disconnect from any access point [16]. Thus,
for each user in the network, at each specific ∆t = m, a matrix Tm

AP is assembled, as follows
AP0 → AP0 AP0 → AP1 ... AP0 → APN
AP1 → AP0 AP1 → AP1 ... AP1 → APN

... ... ... ... ...
APN → AP0 APN → AP1 ... APN → APN

×


AP
′
0

AP
′
1

...
AP

′
N

 = λ


AP

′
0

AP
′
1

...
AP

′
N

,
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where APi → APj indicates the probability of users transitioning from the access point
APi to the APj, and λ is an eigenvalue corresponding to the matrix decomposition into

singular values. Choosing λ = 1 gives the eigenvector
−→
P m

n which, normalized, represents
the invariant probability that user n is connected at each access point at instant mx. Thus,
for each instant mx, the expected value of the number of users associated with the access
point APk is given by the sum of the invariant probabilities of each user n at time mx for
APk, according to

E(Users in APk)
m =

N

∑
j

−→
P m

j [APk]. (1)

In this way, the workload of the access point is defined as a function of the expected
value of the number of users associated to the AP throughout the day.

3.2. Model for Identification of Usage Profiles

The proposed strategy requires high computational power to process the data to pre-
dict the expected load on the access points, even if the analysis is based only on the network
flows and the association records of the devices with the access points. The proposal uses
Big Data techniques for processing in the cloud, as the data volume overgrows with the
number of access points and network flows, implying that the analysis may be unfeasible
in lower computing power scenarios. Thus, to increase our strategy efficiency, we propose
grouping the flows into users’ profiles. The workload estimation based on users’ profiles
save computational resources since the access point association activity can be discarded
after processing and generating the probability vectors

−→
P m

j [APk] for each user and each
access point in the network.

The collected NetFlow data are enriched with the information about the association
between the user’s device and the access point used at the instant of each flow occurrence.
Reis et al. describe the data capture phase, detail the dataset construction, and explain
the key features of the dataset [13]. The enriched data have features related to the net-
work flows, access points, and other categorical features. The flow-related features are the
number of packets, duration, and number of transferred bytes. The access point features
are the number of associated devices and the identification of the access point. Besides,
the categorical features identify accessed services, transport protocols, transport protocol
flags, and the access point each user is associated with. The categorical features expand the
dataset into a space with more than 650 features, as each monitored access point becomes a
flow feature (Although the dataset is anonymized, it still may contain sensitive information.
Therefore, the dataset is publicly available under a non-disclosure agreement by contacting
the corresponding author.). These data are the input of the K-means unsupervised cluster-
ing algorithm. The algorithm attempts to find the centroid of discrete K groups within the
data. The members of one group are as close as possible to each other while maximizing the
distance to members of other groups. Thus, the algorithm’s goal is to reduce the internal
distance and increase the external distance. In the paper, the distance is the degree of
similarity of the records, represented by the Euclidean distance. The proposed strategy
uses a modified version of the clustering algorithm, K-means Web-Scale [24]. This version
is more accurate than the original, maintaining the scalability characteristics even for large
datasets, while training in a feasible time frame. The employed algorithm uses mini batches
of training data, which are small, random sets of the original data. The k-means algorithm
receives the data in tabular format, where the rows represent the collected traffic data,
and the columns represent the features of the data. The n features in each row represent a
point in an n-dimensional space. The Euclidean distance between these points is used to
represent the similarity in each data flow, and the algorithm uses this distance function to
group the network flow.

As it is an unsupervised learning algorithm, the final groups in the training set are
unknown at first. Nevertheless, it is necessary to initiate the algorithm with the number of
groups to be defined. Each group represents a user profile in the network. The effectiveness
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metric for determining model parameter optimization and obtaining the best assertiveness
is defined as minimizing the mean squared distance of each point in each group to the
center of the nearest group. The smaller the effectiveness metric, the better is the defined
model. Therefore, the goal is to find the set of groups C of the group of centroids c ∈ <n,
where n is the number of features in the dataset and |C| = k is the number of users’ profiles
that best describe the dataset. The algorithm minimizes the function

min ∑
x∈X
|| f (C, x)− x||2, (2)

through a set X of the collected data, with a sample x ∈ X and x ∈ <n, where f (C, x)
returns the center c ∈ C closest to x using the Euclidean distance. Since this is an NP-
hard problem, the algorithm terminates after the defined number of iterations. The
number of iterations is also the subject of analysis in the experimental evaluation of
the proposed strategy.

3.3. Model for Predicting Expected User Behavior and Expected Usage on Access Points

The third part of the proposal forecasts the workload at each access point based on
the network users’ profiles. From the grouping of each flow and the probability of the user
is associated with a given access point, the forecasting considers the probability of the user
have a flow with a defined user profile. We assume that a given user that does not perform
any network communication during the analyzed period is in the “no profile” state (PU0).
Like the workload forecasting model, we build the transition matrix, TPU , where each
element tPU

ij represents the probability of a user switching from the user profile PUi to the
user profile PUj. In this way, the matrix TPU represents the transition probabilities between
users’ profiles and has dimensions (K + 1)× (K + 1), where K is the number of detected
users’ profiles in the wireless network. To this end, we assume that a user’s transition
between different profiles is a Markovian process and thus independent of the previous
states. The assumption is consistent with the observation that the network usage profile is
associated with the network’s instantaneous occupancy and usage conditions.

Thus, for each user, we assemble the Tm
PU matrix of user profile transition, at each time

interval ∆t = m of the collected flows.
Similar to workload forecasting, we perform the decomposition of the transition

matrix into singular values. Selecting the normalized eigenvector
−→
U m

n , the invariant of
the matrix represents the probability that user n is generating network traffic associated
with a given user profile at time mx. Since there is no historical correlation between flows,
it is possible to use a first-order Markov chain as each flow is independent for a given
application. Thus, we assume that the current profile depends only on the previous profile,
and the transition from any user profile to any other profile is possible. Then, using the
probabilities of a user assuming a profile and being connected to a given access point, it
is possible to infer the probability that a flow of a given user profile is in use at an access
point through conditional probability. Considering that the user being associated with a
given access point and the user profile are independent variables, the probability that a
profile w (PUw) is present at access point k (APk) at time mx is given, for each user j, as the
product

−→
P m

j [APk]×
−→
U m

j [PUw].
Thus, at each time mx, the expected value for a load of each user profile (PUw) at an

access point k (APk) is the sum of the probabilities of the invariants of each user n at that
instant mx, according to:
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E(PUw em APk)
m =



Para PU0 →
N
∑
j

−→
P m

j [APk]×
−→
U m

j [PU0]

Para PU1 →
N
∑
j

−→
P m

j [APk]×
−→
U m

j [PU1]

...

Para PU5 →
N
∑
j

−→
P m

j [APk]×
−→
U m

j [PU5].

. (3)

Therefore, the expected workload of each network usage profile at each of the access
points throughout the day can be defined.

4. Experimental Analysis of the Proposed Strategy

Considering the proposed strategy, in this paper, we deploy a virtual server on
Amazon AWS with 32 GB of RAM to process all the traffic matrices of the academic
network. Table 1 shows experiment characteristics. The load analysis on each network’s
access points is carried out at fixed intervals, every 10 min, in which the association of
each user to the APs in the network is evaluated. Figure 2 shows that the proposed model,
based on first-order Markov chains, estimates the expected load on each access point with
good predictive accuracy, achieving 90% assertiveness for all access points. Figure 2a,c,e
present, respectively, the results obtained for the data collected at 10 AM, 1 PM and 5 PM
for all access points. There is a large overlap between the values for predicted load and
actual load for all access points, indicating that the prediction is assertive. It is worth
noting that each time of day presents different load behaviors, with different numbers of
users. To statistically evaluate the model assertiveness, Figure 2b,d,f show the cumulative
distribution function for the model’s forecasting errors for each hour of the day represented.
Regardless of the usage pattern for each hour of the day, the proposed model is accurate
for more than 90% of the Access Points in the network within a confidence interval of 90%.

Table 1. Experimental set-up features. The large-scale wireless network accounts for up to 5000 con-
current users and serves more than 60,000 users in total.

Feature Experimental Set-Up Value

Access Points 363

Internet Gateways 5

Collected Days 8

Unique Devices Detected 6770

Peak network traffic 100 Mb/s

Figure 3 shows how the proposed model follows the actual access workload curve for
two specific access points during the day. The chosen access points, AP 222 and AP 255,
are critical in the network, as they are among the 20 most used in the entire network. AP
222 has the worst prediction, the greatest cumulative absolute error, and the highest use in
the network among the access points. In contrast, AP 255 has the most accurate prediction,
the smallest error. The comparison between the forecasted and the actual workload is
shown in Figure 3a for the AP 222 and in Figure 3b for the AP 255. It is noteworthy
that the model tends to predict access load with less assertiveness at the beginning of
the network operation when there is less network traffic. As the number of flows in the
network increases, the volume of data for analysis grows, improving model accuracy for
both APs. Examples in Figure 2 ratify this conclusion, as the model precision is greater
for the analysis at 5 PM in comparison to analysis in previous hours. The observation is
consistent for all access points. This characteristic is favorable to the proposed model since
the forecast accuracy increases with the number of associations to the network.
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(c) Load on APs at 1 PM.
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(d) CDF of the 13 hour forecast error.
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(f) CDF of the 17 hour forecast error.

Figure 2. The comparison between the actual load and the load predicted load. The Cumulative Distribution Function
(CDF) of the model prediction errors show that the proposed model has prediction assertiveness always above 90% for all
access points.
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(b) Load on AP 255.

Figure 3. Comparison between actual and predicted load for Access Points 222 and 255 which are among the 20 most
used APs. (a) AP 222 has the largest absolute cumulative error of the prediction. (b) AP 255 has the smallest absolute
cumulative error.

Figure 4 compares three different model evaluation metrics for traffic prediction.
Figure 4a shows the Root Mean Square Error (RMSE) of the model. The RMSE is a way of
evaluating the difference between an estimator and the true value of the estimated quantity.
MSE is the Mean Square Error, with the error being the amount by which the estimator
differs from the quantity to be estimated. MSE is defined as:

MSE(θ̂) =
1
N ∑

i
(θ̂i − θi)

2, (4)

where θ̂ is the estimator being evaluated, and θi represents the actual values. The results
show that the mean square error is less than 0.15 for any access point throughout the day.
It is noteworthy that the minimum error value is reached when there is the highest volume
network usage. R2 score shows the ratio of the prediction variance that the model can
correctly forecast. R2 score is given by:

R2 = 1− ∑i(yi − fi)
2

∑i (yi − ȳ)2 , (5)

where yi represents the actual measured value, fi represents the predicted value, and ȳ is
the average of the values. Figure 4b shows the results for the consolidated R2 score for
all access points. The results show that the model predicts more than 0.80 of workload
variation at the access points throughout the day. The result also confirms that the model’s
precision increases at times of greater use of the network. Finally, Figure 4 shows the
maximum error between the forecast and the current load of the access points throughout
the day. It turns out that the maximum error is limited to five users per access point for
most of the day. However, the maximum error, approximately seven users per access point,
occurs when there is a discontinuity in the network load caused by the abrupt drop in
network usage at the end of the day. It is a limitation of using Markovian models.
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Figure 4. Workload prediction quality metrics for the proposed strategy. Metrics are applied to all access points over a day.
(a) The more significant is the load on the network, the smaller is the error. (b) The model predicts more than 0.80 of the
variation for all cases. (c) The model error is limited to 7 users per access point.

Besides the workload forecasting, the proposal also evaluates the users’ profiles. The
proposal is based on the k-means Web-Scale algorithm to identify network users’ profiles.
Figure 5a presents the comparison of the Mean Square Error for the distance between
samples and the cluster centroid for clustering the dataset into 2 up to 20 clusters. According
to the Elbow method, we conclude that the ideal number of clusters for the analyzed data is
five groups. The Elbow method aims to identify the best balance between processing cost
and data modeling quality, determining when the gain is no longer significant to add one
more cluster. The Elbow method consists in drawing a straight support line connecting the
two ends of the error curve by the number of clusters, in blue, and calculate the distance
between the Mean Square Error curve for a given number of groups and the straight
support line in blue [25,26]. The best number of clusters is the one that presents the most
significant distance between the point in the Mean Square Error curve and the support
line. Figure 5b shows the comparison between the distance of errors per number of groups
and the support line. The algorithm’s configuration that presented the best performance
is the one with five clusters. At this point, there is an inversion in the error growth trend,
indicating the best trade-off between the number of clusters and processing. Therefore, five
user profiles are considered in the analyzed network. In this way, it is possible to quickly
apply to each new flow reported by NetFlow, the clustering model of network flows for
user’ profiles and, thus, determine the workload pattern that best applies to the users on
an access point.
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Figure 5. Representation of the number of clusters that best represents the data set. (a) The Elbow method searches for the
number of clusters, red curve, that is furthest from the support line in blue. (b) Mean square error between the samples and
the centroid in each configuration with different number of clusters.
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Using the data enriched by the users’ profiles, it is possible to execute the proposed
strategy and forecast the workload at each access point according to the users’ profiles.
Figure 6 shows the cumulative probability distributions of forecast errors for each of the
profiles at three times of the day: 10 AM, shown in Figure 6a, 1 PM in Figure 6b and
5 PM in Figure 6c. The results reveal that the workload prediction based on profiles is
accurate for all profiles since the number of errors is less than five for more than 90% of the
cases evaluated.
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(a) Profile Load at 10h.

0 7 14 21 28
Prediction Error - Number of Users

0.90

0.95

1.00
P(

x
X)

Profile = 1
Profile = 2
Profile = 3
Profile = 4
Profile = 5

(b) Profile Load at 13h.
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Figure 6. Comparison of the cumulative distribution functions (CDF) of the profile load forecast errors at the grid points at
(a) 10 AM, (b) 1 PM and (c) 5 PM.

5. Conclusions

Large-scale wireless networks are increasingly common, and their adoption has grown
considerably. However, it is still challenging to forecast the workload on these networks
and estimate users’ behavior into different access points. In this paper, we proposed
to build a workload prediction model for each user profile using network flow data,
reported by the NetFlow, and the registries of device association with access points in
the network. We evaluated our proposal in a subset of 363 access points of the wireless
network from the Universidade Federal Fluminense (UFF), one of the Brazilian biggest public
universities, with more than 60,000 registered users for its wireless network, registering
peaks of 5000 concomitant users. The proposed strategy accurately forecasts the workload
in 90% of the tested scenarios. The evaluation of the proposed strategy shows that its
assertiveness is more significant when there is more network traffic, as there is a more
significant data volume for analysis. In the case of little data to analyze, the error margin
increases as there is less information to model the forecasting. The results show that the
proposed strategy achieves a normalized Mean Squared Error between 0.10 and 0.15 for all
access points during evaluation periods. Moreover, we show that the proposal achieves a
r2 score always greater than 0.80, which indicates a high correlation between the predicted
model variations and the data. The absolute maximum error metric shows that seven
users are the upper limit of the error between predicted and real values of the number of
users in an access point. The proposal further considers estimating users’ profiles through
an unsupervised machine learning algorithm (k-means), which proves to have the best
performance with five different user profiles. Our proposal shows that the users’ profiles
combined with the access forecast at each access point are powerful tools to predict future
network behaviors precisely.

The proposal is an enabling technology for building smart campus networks, network
anomaly detection systems, planning frameworks, and energy-saving solutions through the
disconnection of underused access points. Moreover, the proposed strategy is also the basis
for implementing intelligent data caching and quality of service control solutions. As future
work, we intend to analyze the users’ movement in the network, mapping movement in the
university campus using deep neural networks for processing traffic matrices as a function
of time.
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