
A Precise Flow Representation for Autonomous
IoT-Devices Reconnaissance

Govinda M. G. Bezerra∗‡, Tadeu N. Ferreira‡, Diogo M. F. Mattos∗
∗LabGen/Mı́diaCom, ‡LAProp – PPGEET/TET/UFF

Universidade Federal Fluminense (UFF) – Niterói, Brazil
{govindamgb, tadeu ferreira, diogo mattos}@id.uff.br

Abstract—Devices from the Internet of Things increasingly
mediate a significant number of essential everyday activities.
IoT devices empower homes, industries, and offices, monitoring,
sensing, and acting ubiquitously and stealthily. However, each
device produces a network fingerprint that leaks information
about users’ behaviors and routines. This paper proposes a flow
representation method for precise recognition of different types
of IoT Devices. Our proposal relies on a tensor representation of
the network flows to retrieve spatial and temporal correlation
of flows. We show that our proposal achieves up to 99%
precision on classifying IoT network flows using machine learning
algorithms, such as Convolution Neural Networks, Recurrent
Neural Networks and boosted decision trees.

Index Terms—IoT Device, CNN, LSTM, Classification, Ma-
chine Learning

I. INTRODUCTION

The 5th generation (5G) mobile networks aim to provide
superior performance to the previous generations in terms of
mobile broadband, massive Machine-Type Communications
(mMTC), and latency. The COVID-19 pandemic boosted the
demand for reliable broadband connectivity to support home
office, homeschooling, and social/everyday interaction due
to the constraints imposed by lockdown and social isolation
measures adopted by many countries in 2020. In this way, the
increased demand for connectivity stimulates the deployment
of the 5G network infrastructure at a faster pace. While only
10% of Communications Service Providers (CSPs) commer-
cialized 5G services in 2020, the current trend is that the share
grows to 60% by 2024 [1].

The 5G network’s major use case is the massive Machine-
Type Communications, designed to support the connection of
many Internet-of-Things (IoT) devices, such as sensors, smart
wearables, domestic appliances, and industrial machinery. As
IoT devices are increasingly present in everyday activities and,
driven by this widespread of devices, the number of attacks has
also grown intensely, with an expansion of more than 100%
in the first semester of 2021 [2]. Hereupon, the autonomous
connection that 5G networks offer to these devices raises
new security and privacy concerns that must be addressed,
considering the IoT devices’ restrictions.

IoT devices present power, processing, networking, and
storage specifications that significantly differ from traditional
Internet nodes, such as servers, computers, and notebooks [3].

The authors would like to thank CNPq, CAPES, FAPERJ, FAPESP
(2018/23062-5), and RNP for the funding that made the research possible.

Meanwhile, due to the heterogeneity of purpose and manufac-
ture designs, IoT devices are also heterogeneous, hindering
a universal approach to securing the devices’ connection.
Furthermore, due to the demand for low-cost devices, man-
ufacturers’ design neglects security and privacy concerns. As
a consequence, IoT devices manifest restricted capability to
resist cyberattacks.

This paper proposes a method to disclose IoT devices
as monitors network traffic and identifies the IoT devices’
type. We extract flow-level statistical information from real
IoT device network data. The proposed data representation
structure is a tensor that captures the spatial and temporal
correlation between network flows. We deploy device clas-
sification models based on Machine Learning, using three
different approaches: Convolutional Neural Network (CNN),
Long Short-Term Memory (LSTM), and Extreme Gradient
Boosting (XGBoost). We investigated each machine learning
model using different configurations in order to select the best
parameters and architecture.

The ubiquitous introduction of IoT devices raises privacy
concerns since these devices are embedded with communi-
cation capabilities and interact with users or remote servers.
The devices’ network activity indicates users’ behaviors and
routines, even without access to network traffic payload [4],
[5]. Moreover, users are unaware that IoT devices collect
information even when they are not actively used and may
send data to first and third parties [6]. Unlike previous work,
our proposal focuses on data representation to enable precise
device recognition. Our results show that machine learning
models achieve accuracy and precision higher than 97% for
the evaluated neural network models and 99% for the best
tree-based configuration.

The remainder of the paper is organized as follows. In Sec-
tion II, we summarize related works. Section III presents the
IoT devices dataset and the characterization of device traffic. In
Section IV, we describe our proposal for data representation.
Section V presents the machine learning approaches used in
this paper and Section VI describes the evaluation and results.
Section VII concludes the work and presents future directions.

II. RELATED WORK

Previous works focus on classifying IoT devices and discuss
approaches to enhance accuracy and precision in recognizing



IoT devices or users’ behaviors. Li et al. analyze university-
campus network traffic to extract flow features that rely on the
names of the contacted hosts, flow statistics and geographic
information implicit in IP addressing [7]. Considering these
features, they predict users’ gender and education level with
an accuracy of 82 and 78%, using an XGBoost model.

Sivanathan et al. aim to identify IoT devices through a two-
stage classification method [8]. The first classification stage
deploys the naive Bayes algorithm to classify devices based on
contacted domains, communication ports, and cryptographic
cipher suites shared during TLS handshake. The second stage
classification combines first-stage results with more features,
such as duration, volume, flow rate, DNS request intervals, and
NTP request intervals. The proposed method achieves 99.88%
accuracy using one-hour long time windows. A downside of
the approach is that the time window is long for most IoT
device classification applications, such as intrusion detection
or network management. Shahid et al. aim to classify device
flows according to information such as packet size and packet
interarrival time [9]. The proposed approach classifies the
devices with 99.9% accuracy, but the proposal analysis only
considers four devices with clearly distinct behavior: a camera,
a lamp, a sensor, and a plug. Besides, Meidan et al. identify
IoT devices with 99.28% accuracy considering features ex-
tracted from TCP sessions [10]. However, the approach fails
as some IoT devices do not use the TCP protocol.

Bai et al. propose an automatic method for identification of
IoT devices categories, which consists of clustering packets
in time windows and extracting features, such as the number
of received and transmitted packets and packet counts for
different protocols [11]. The work combines Long Short-Term
Memory (LSTM) and Convolutional Neural Networks (CNN)
to achieve an average accuracy of 74.8%. Similarly, Lopez-
Martin et al. propose different combinations of CNN and
LSTM networks to classify services/applications, e.g., HTTP
and SIP [12]. The proposed method input is a 20 × 6 matrix
representing 20 packets with six features: source and desti-
nation ports, number of bytes, TCP window size, interarrival
time, and flow direction. The proposed method achieves 96%
accuracy and 95% F1-score. In turn, Abbas et al. adopt a
more straightforward configuration and perform IoT device
classification using the K-Nearest Neighbors approach and
obtain a 95% accuracy and a 91% F1-score [4].

Unlike previous approaches, our proposal achieves high
accuracy and precision in the IoT devices classification, with
a short time window, within 60 seconds, suitable for online
applications. Furthermore, our model uses only statistical flow
features, which allow device classification regardless of the
transport and application protocols or the use of encryption,
such as TLS and HTTPS. Besides, our method is flexible
enough to correctly distinguish similar devices, as our analysis
considers a dataset of more than 30 devices, with six device
categories and different device models for each category.

III. PREPROCESSING THE IOT DATASET

This paper uses a real network traffic of IoT devices to train
and evaluate machine learning algorithms. The dataset used to
validate the proposal is a subset from the one proposed by
Ren et al. [6], which contains the traffic of 33 IoT devices
captured using tcpdump1 and stored as raw pcap files. The
traffic of each device is composed of flows between network
peers, using various transport and application-layer protocols
with several flow patterns.

The traffic is generated through multiple experiments, di-
vided into three categories: power, interaction, and idle. The
power experiment traffic contains network packets collected
for two minutes after launching the device. The interaction
experiments generate traffic through the interaction with the
device, such as physical interaction, voice commands, or com-
panion mobile applications. The idle traffic is collected when
no user is interacting with the device. The idle experiments last
8 hours and are performed three times, whereas the power ex-
periments last for two minutes with, at least, three repetitions
for each device. The interaction experiments vary in duration
according to the type of interaction and vary the repeatability
according to the automation viability of the test. Automated
interactions, such as the use of companion application and
voice command, were performed at least thirty times, while
non-automated interactions, such as physical interactions, were
performed at least three times.

The dataset includes two device sets of experiments, one
performed in USA and another performed in UK. The devices
used in each set are different, and, in the present paper, we
focus on the UK subset. Table I summarizes the monitored
devices and their categories.

TABLE I
CATEGORIES AND MODELS OF MONITORED IOT DEVICES.

Cameras Smart Hubs Home Automation
Blink Cam Blink Hub WeMo Plug

Bosiwo Cam Insteon Honeywell T-stat
Ring Doorbell Lightify Magichome Strip
Spy Camera Philips Hub Nest T-stat

Wansview Cam Sengled TP-Link Bulb
Xiaomi Cam Smartthings TP-Link Plug

Yi Cam Xiaomi hub
TV Audio Appliances

Allure speaker
Apple TV Echo Dot Anova Sousvide
Fire TV Echo Spot Netatmo Weather

Roku TV Echo Plus Smarter Brewer
Samsung TV Google Home Mini Xiaomi Cleaner

Google Home

A. Data Preprocessing

The raw data consists of several packets scattered in several
files containing rough and irregular data. Thus, a preprocessing
step is mandatory to analyze and use them correctly. The
dataset pcap files are parsed using the PyShark library2 and,

1Available at https://www.tcpdump.org/.
2Avaliable at https://github.com/KimiNewt/pyshark/.



through this, the target fields are extracted and saved as a
DataFrame structure from the Pandas library3.

The considered packets in this analysis use IP protocol
in the network layer and UDP or TCP as the transport
layer protocol. Datalink layer packets and control packets,
such as ICMP, were discarded. The fields extracted from the
packets are source and destination ports, source and destination
IP address, source and destination MAC address, transport
layer protocol, packet size, TCP flags, TCP segment size,
timestamp, application layer protocol. For UDP packets, the
fields referring to the TCP protocol were set to zero. The
resulting dataset contains more than six million packets.

The preprocessing step does not consider packet payload
because we focus on characterizing the devices according to
their flow pattern rather than the data content. Besides, the data
may be private due to protection with cryptographic protocols,
such as HTTPS and TLS.

We assort packets into flows according to their source
and destination IP addresses, source and destination ports,
and transport-layer protocol. Each packet receives a flow
identification number and a direction label that can assume
either the value “forward”, if the device sends the packet, or
“backward”, otherwise.

B. Traffic Characterization

Given the diversity of applications and manufacturers, the
device’s network features vary in application protocols, com-
munication ports, contacted servers, and flow statistical met-
rics. To illustrate these differences, Figures 1(a) and 1(b) show
the Sankey diagram of the network activity of two IoT device
hubs: the Blink Security Hub and the Xiaomi Hub. Figure 1(a)
shows that most Blink Security Hub packets use the transport
protocol TCP and HTTPS as the application protocol, using
UDP to resolve hostnames and to synchronize clocks. The
communication endpoints consist of DNS and NTP server and
a manufacturer host. Figure 1(b) shows the communication of
the Xiaomi Hub, which, on the other hand, is very different
from the Blink Security Hub. Xiaomi Hub uses multicast DNS
to resolve local devices hostnames and uses transport ports in
the range of non-privileged user ports, ranging from 1024 to
49151.

In our approach, we aggregate the traffic as flows. Thus,
we first investigate the duration of the flows to choose an
appropriate monitoring period. We consider as the flow dura-
tion the interval between the first and the last received or sent
packet. Figure 2 reveals that the duration of flows ranges from
milliseconds to a few minutes, but more than 80% of flows
last only up to 10 seconds, and 60 seconds encompass 97%
of all flows. We consider 60 seconds as the time window for
our traffic analysis for the rest of this paper.

IV. THE PROPOSED DATA REPRESENTATION

We exploit the privacy vulnerabilities of the presented
dataset using machine learning algorithms to identify and

3Avaliable at https://pandas.pydata.org/.

classify the IoT devices using their traffic flow information.
Our methodology uses statistical information from the devices’
network flows. Hence, our methodology also applies to en-
crypted network traffic, since it does not rely on the packet
payload data. Another advantage of the statistical approach is
the independence of the port numbers and host IP addresses,
hardening the model against protocol changes or application
server updates.

IoT devices behave differently, depicted in Figure 1, and
the flow durations last from a few milliseconds to several
minutes, Figure 2. To extract the flow statistics, we divide
the analysis into time windows, which tend to capture the
main flow features and are still usable in online classification
environments [13]. Figure 2 shows that using a 60 s time
window encompasses the total duration of more than 97% of
the flows present in the dataset and allows long-lasting flows
to be well represented, without excessive fragmentation.

To analyze the data, we extract the network packets from
the pcap file, and divide them into time windows based on
their timestamp and the flow identifiers assigned in the pre-
processing step. Then, we calculate the flow statistics for each
time window and use these statistics as features to the machine
learning algorithms. Our approach uses four types of features:
data volume, temporal behavior, speed characteristics, and
TCP protocol attributes. Each flow contains these features
calculated for received and sent packets and the sum of the two
subsets. Thus, the overall flow representation contains two-way
traffic features.

The first set of features is volume-based, consisting of the
packets’ number and size in bytes. As the packets vary in
size, we calculate the minimum, maximum, mean, variance,
and standard deviation values to represent the metric, in
addition to the total number of bytes. Furthermore, temporal
features, comprising the flow duration and the inter-arrival
times between packets, are represented with statistical values
as the volume-based features. We also deploy ratio features,
such as the number of packets per second, the number of bytes
per second, and the ratio between reception and transmission
rates. Lastly, features related to the TCP protocol correspond
to the number of packets whose each flag in the TCP header
is active and the statistical values of the TCP segment length.

The feature extraction outcome is a tensor dataset repre-
senting 76 features for 294 thousand flows of 34 devices4. We
observed that some features have outliers that could negatively
affect the performance of machine learning models. Thus, we
upper limit the maximum value of each feature as the value of
the 90th percentile and bottom limit it to the 10th percentile.
This procedure is mandatory before the normalization, since,
during the normalization procedure, outliers may lead median
values to an insignificant range of values, which hampers the
classification algorithms.

4The device Insteon Hub does not have enough traffic data to be analyzed,
and it was excluded from the analysis.



(a) Network traffic diagram for a Blink Security Hub. (b) Network traffic diagram for a Xiaomi Hub.

Fig. 1. Comparison of different devices’ network activities. Although both devices are smart thing hubs, (a) connects to multiple NTP servers and use unicast
DNS requests, while (b) deploys multicast communication to propagate DNS requests locally.

Fig. 2. Cumulative Distribution Function (CDF) for the flow duration. A 60 s
time window encompasses up to 97% of all flows in the dataset.

V. MACHINE LEARNING CLASSIFICATION

We choose three well-known machine learning models from
the literature to perform device identification and to verify the
suitability, strengths and weaknesses of each implementation.
The chosen models are: Extreme Gradient Boosting (XG-
Boost) decision trees, Convolutional Neural Network (CNN),
and Long Short-Term Memory (LSTM). All models use the
same data with the same flow features, but data organization
differs for each model to match the model’s input specifica-
tions. Next, we present a brief description of each evaluated
algorithm, its implementations, and how we represent the data
in each scenario.

A. Extreme Gradient Boosting Algorithm

Extreme Gradient Boosting Algorithm (XGBoost) is a ma-
chine learning system that uses decision trees to perform
classification and regression tasks [14]. A decision tree is a
structure of nodes, branches, and leaves. The nodes represent
a test on some attribute, the branches represent the test results,
and the leaves contain the output value used to perform
prediction. The boosting technique consists of using several
weak learners combined to create a more robust learning
system. The algorithm creates and adds a tree at a time to

the model to improve the prediction that the existing trees
perform. The final classification prediction consists of the
sum of values of the leaves corresponding to the class in the
trees. An important XGBoost parameter is the maximum depth
value, which higher values increase the ability to fit the data,
whereas increases the complexity and the risk of overfitting.

The data structure used to train the model is a vector
of feature values for each flow in a time window. The
data structure implementation is a DataFrame from Pandas
library. Labels containing class names are mapped to an
integer for compatibility with the XGBoost implementation
in the XGBoost5 Python Package. In our approach, each
algorithm input sample is a vector that corresponds to one
flow containing its 76 features.

B. Convolutional Neural Network

Convolutional Neural Network (CNN) is a powerful ma-
chine learning mechanism that has been widely used in im-
age classification, achieving state-of-the-art results. The input
samples of a CNN may be interpreted as images that are
three-dimensional arrays, where two dimensions represent the
width (w) and height (h) of the image and the third dimension
represents the color channels (c). In this way, an image in an
RGB color space contains three color channels (red, blue, and
green). A grayscale image, however, has only one channel.

The CNN model relies on the concept of the mathematical
operation known as two-dimensional convolution, where an
n×n filter sweeps across the image to extract image features,
such as borders and color. In a convolution layer, the filter is
applied to an area of the image, called receptive fields, then the
dot product between the filter and the pixels is calculated and
entered into a matrix. The output matrix of the convolution
layer is known as a feature map or activation map. In addition
to convolution layers, CNN deploys pooling layers and fully
connected layers. The goal of pooling layers is to reduce
the dimensions of the feature map and, for that, an m × m
filter traverses the feature map, aggregating the values and
generating an output matrix with a smaller dimension than

5Available at https://xgboost.readthedocs.io.



the input matrix. The fully connected layers are responsible
for performing image classification. In these layers, all nodes
connect to every node of the previous layer.

Our data representation creates an w × h image in which
each flow is a row and features are columns. We set the image
width w to 76, representing the flow features. To choose the
height h, we use the number of active flows in the same time
window. Figure 3 represents the CDF of active flows, in which
it is possible to observe that 90% of the time windows contain
at most 15 active flows. Thus, we set the image height h to
15. If a time window contains less than 15 flows, it does not
have enough flows to fill image rows, so the remaining rows
are padded with zeros. On the other hand, time windows with
more than 15 flows are adjusted by randomly discarding flows.

Fig. 3. Cumulative Distribution Function (CDF) of the number of flow per
window. A 60 s windows reaches 0.9 probability of containing up to 15 flows.

The CNN model is built using the Keras6 API in Python.
The input format of this network has four dimensions: batch
size, height, width, and depth. As our data do not have the
dimensional depth, we reshape our time window image to the
format (15, 76, 1) and concatenate all matrix to get a tensor
shaped as (44.645, 15, 76, 1).

C. Long Short-Term Memory

Long Short-Term Memory (LSTM) network is a special-
ized Recurring Neural Networks (RNN). RNN differs from
traditional neural networks in storing and using states or data
from previous inputs to calculate subsequent outputs. This
feature allows RNNs to learn temporal relationships among
data, making the model popular for applications with time-
varying data, such as voice recognition, language translation,
and time series prediction. RNNs use the back-propagation
through time algorithm to calculate the gradients and adjust
the weight of the network nodes. Thus, each time step is
considered as a layer. The major drawback of the method
is that the gradient exponentially vanishes as it propagates
through the layers, making the first layers always suffer a
minor adjustment and, consequently, holding less learning
capacity. Thereby, traditional RNNs are considered short-lived
memory networks.

6Available at https://keras.io/.

The Long Short-Term Memory (LSTM) network is a spe-
cialized RNN capable of learning long-term dependencies. The
model has memory units in hidden layers, each containing
three gates: an input, an output, and a forget gate. The input
gate is responsible for loading values from the input into
memory. The output gate decides what memory information is
presented as an input to the learning mechanism of the node.
Lastly, the forget gate controls which information is discarded
from memory.

We use two different approaches to train LSTM neural
network. In the first approach, the input is a single flow. Hence,
flows are presented, processed and classified individually, in
the same way that is done in XGBoost. In the second approach,
we group flows of the same time window as the LSTM input.
Therefore, the algorithm processes and classifies time windows
containing 15 flows, similarly to the image processing of CNN.
In both approaches, LSTM processes the ordered data to learn
the temporal patterns. We built the LSTM model using Keras.

VI. PROPOSAL EVALUATION AND RESULTS

All experiments were performed on a computer equipped
with an Intel i7 9700k CPU @ 3.0 GHz, NVIDIA GeForce
GTX 1660 Super (6 GB) graphics card, and 32 GB memory.

We apply a 10-fold cross-validation approach for model
training to allow its evaluation with different dataset arrange-
ments and to reproduce the training several times, verifying
the statistical relevance of the obtained result. For training the
CNN and LSTM, we configure a limit of 100 epochs and an
early stop callback with patience of 10 epochs, which prevent
the model from overfitting. The validation set for these two
neural networks contains 10% of the training set and is used to
control and trigger the early stop callback. We evaluate model
performance according to the following metrics: accuracy,
precision, recall, and F1-score. We also evaluate the models for
processing time, represented by training and prediction time.
The latter is defined as the time needed to classify all samples
in the test set. The former is the time for training the model
until reaching the stop condition.

To evaluate the performance of CNN with the network flow
data and choose the best neural network architecture that best
fits the device identification problem, we implement three
CNN models, and we evaluate the impact of adding layers
on the overall outcome in terms of classification performance,
training and prediction time. Hence, we define a basic block
containing three layers. The first layer is a convolutional layer
with a 3 × 3 kernel and filter size 32, followed by a max-
pooling and batch normalization layers. The simplest model
has only one copy of the basic block; the second one presents
two blocks; and the third model, three blocks. All three
models have a flatten layer, a fully connected layer containing
50 nodes, with linear rectification function (ReLu) as the
activation function, and a batch normalization layer. The last
layer is a fully-connected layer with 33 nodes with a softmax
activation function that gives the classification outcome as the
probability of each class.



(a) Classification performance. (b) Training and prediction time.

Fig. 4. Comparison between the CNN models with 1, 2 and 3 layers of convolution, max pooling and batch normalization. (a) shows the classification
performance and (b) shows the training and prediction time. The CNN model with 3 layers achieves the best classification results with a small increase in
training and prediction time.

(a) Classification performance. (b) Training and prediction time.

Fig. 5. Comparison between the LSTM models with 1D and 2D inputs, with 50, 100 and 200 units. (a) shows the classification performance and (b) shows
the training and prediction time. The LSTM model with 2D input and 200 units achieves the best classification results with a increase in training time.

Figure 4(a) shows the results for the three analyzed CNN
models. It is worth noting that all networks performed over
90% for device classification on all four metrics and that
the performance gradually improves with the addition of
the 3-layers blocks. Training and prediction time, as seen
Figure 4(b), show that the performance growth is due to the
increase in the network’s complexity and processing time.
Although adding complexity to the network architecture im-
proves the classification performance, the additional process-
ing time may be harmful to applications that work with a large
amount of data, such as real-time network flow analysis.

We evaluate the LSTM network model following two differ-
ent approaches. The first approach deploys a two-dimensional
input, which is similar to the image concept used in the
CNN network. The second approach uses a one-dimensional
input, representing a single flow and features similar to the
XGBoost model. Both models contain an LSTM layer and
a fully connected layer with 33 nodes running a softmax
activation function. The classification output of the LSTM
model is the probability of the flow belonging to each class. In
both approaches, we change the number of LSTM layer units

and analyze the performance to choose the best configuration.

Figure 5(a) shows the result of the tested LSTM models. The
two-dimensional input model performs up to 10% better in all
analyzed metrics than the one-dimensional input LSTM model.
This result demonstrates that, for LSTM networks, grouping
flows into time windows optimizes the model performance.
Regarding processing time, Figure 5(b) shows that the training
time of the two-dimensional input LSTM is at least four times
greater than the training time of one-dimensional input LSTM.

We train the XGBoost model with three different values, 4,
5, or 6, to set the maximum depth limit for the decision trees.
We highlight that finding the best value for the parameter is
essential because increasing its value may improve the clas-
sification performance at the cost of making the model more
prone to overfitting. The evaluation metric used is multiclass
logistic loss, and the other parameters remain with their default
values. The XGBoost model deploys the approach of individ-
ual flow classification and, thus, the model input is composed
of a 76-feature vector representing a flow. Figure 6(a) shows
the results achieved with the different configurations. It is
possible to observe that the model using 5 and 6 levels as the



(a) Classification performance. (b) Training and prediction time.

Fig. 6. Comparison between the XGBoost models with maximum depth values of 4, 5 and 6. (a) shows the classification performance, and (b) shows the
training and prediction time. The models with maximum depth values of 5 and 6 achieve comparable classification results, but the former is less complex
and has shorter training and prediction time than the latter.

Fig. 7. F1-Score of each device class for CNN classification model. Smart home assistants, such as, Google Home (Google_h), Google Home Mini
(Google_h_m), Echo Dot and Echo Plus, are the classes that represent the lowest performance for all classification models.

Fig. 8. Confusion matrix of the top five misclassified devices. Home assistant
devices introduce misclassifications due to different versions of each device.

maximum tree size achieve similar performance. However, in
the comparison of training and prediction time illustrated in
Figure 9(b), the model with depth limit equals to 5 requires
shorter processing time.

All models scored higher than 90% on all evaluated metrics
and performed similarly for most devices. Figure 7 shows the
classification result, detailed by device, of the CNN with three
layers of convolution. It is possible to observe that the model
had the worst performance in classifying the home assistant
devices: Google Home, Google Home Mini, Echodot, Echoplus
and Echospot. The confusion matrix, summarized in Figure 8,
shows that the model confuses between Google Home and
Google Home Mini devices and among Echodot, Echoplus, and
Echospot devices. These devices have very similar behavior, as
they deploy the same services and the most notable difference
between devices in each group is the user-interfacing features.
For simplicity, we do not present detailed results of each
model. The Google Home and Google Home Mini devices are
grouped into a new class called Google Home Devices and
Echodot, Echoplus, Echospot devices are grouped into a new
Echo Devices class.

We compare XGBoost, CNN, and LSTM models that
achieved the best performance in former experiments: (i)
CNN with three layers of convolution, max-pooling, and batch
normalization; (ii) LSTM network with 200 units; and (iii)
XGBoost with depth limit equals to 5. The input data are the
grouped classes for assistant devices, resulting in a set of 30



(a) Classification performance. (b) Training and prediction time.

Fig. 9. Comparison among XGBoost, CNN and LSTM models with 30 device classes. (a) shows the classification performance and (b) shows the training
and prediction time. The XGBoost model achieves the best classification results and shortest prediction time, even though it has the longest training time.

different classes for classification.
Figure 9 shows the results achieved with the three mod-

els. All models show considerable classification improvement
when the assistant devices are grouped. The results obtained
with XGBoost are slightly superior to the CNN results, while
the LSTM model had much lower performance. In addition to
the best performance, the XGBoost algorithm performs a fine-
grained device classification at flow-level resolution, while the
CNN algorithm presents a coarse-grained classification at a
time window resolution. A downside of the XGBoost model
consists of its high training time, whose average value is
greater than twice the training time of an LSTM network.
Moreover, when comparing the prediction time, XGBoost is
almost three times faster than CNN or LSTM due to the
lower number of arithmetic operations XGBoost performs than
neural network approaches.

VII. CONCLUSION

In this paper, we investigated privacy vulnerabilities of
Internet of Things devices using a real network dataset. We
propose a method to classify IoT devices using machine
learning techniques based on statistical flow features that also
apply to encrypted network traffic. Our proposal analyses
only the network traffic data to recognize IoT devices in the
network and, thus, reveals users’ behavior and preferences.
Furthermore, our approach employs a short time window to
extract flows statistics, which allows online operations. We
trained our proposal using three machine learning models with
a dataset containing 33 devices. The results show that our
method can achieve 99% accuracy, precision, and recall for
the best tree-based configuration. Our future work will focus
on recognizing device operating modes and, from that, infer
user behavior patterns.

REFERENCES

[1] “Gartner forecasts worldwide 5g network infrastructure revenue
to grow 39% in 2021,” Aug 2021. [Online]. Available:
https://www.gartner.com/en/newsroom/press-releases/2021-08-04-
gartner-forecasts-worldwide-5g-network-infrastrucutre-revenue-to-
grow-39pc-in-2021

[2] R. Ryan Daws — 7th September 2021 — TechForge Media
Categories: IoT, 5G, Ai, and C. Vehicles, “Kaspersky: Attacks
on iot devices double in a year,” Sep 2021. [Online].
Available: https://iottechnews.com/news/2021/sep/07/kaspersky-attacks-
on-iot-devices-double-in-a-year/

[3] D. M. F. Mattos, P. B. Velloso, and O. C. M. B. Duarte, “An agile and
effective network function virtualization infrastructure for the internet
of things,” Journal of Internet Services and Applications, vol. 10, no. 1,
p. 6, Mar 2019.

[4] A. Acar, H. Fereidooni, T. Abera, A. K. Sikder, M. Miettinen, H. Aksu,
M. Conti, A.-R. Sadeghi, and S. Uluagac, “Peek-a-boo: I see your
smart home activities, even encrypted!” in Proceedings of the 13th ACM
Conference on Security and Privacy in Wireless and Mobile Networks,
2020, pp. 207–218.

[5] J. Li, Z. Li, G. Tyson, and G. Xie, “Your privilege gives your privacy
away: An analysis of a home security camera service,” in IEEE INFO-
COM 2020-IEEE Conference on Computer Communications. IEEE,
2020, pp. 387–396.

[6] J. Ren, D. J. Dubois, D. Choffnes, A. M. Mandalari, R. Kolcun, and
H. Haddadi, “Information exposure from consumer iot devices: A multi-
dimensional, network-informed measurement approach,” in Proceedings
of the Internet Measurement Conference, 2019, pp. 267–279.

[7] H. Li, H. Zhu, and D. Ma, “Demographic information inference through
meta-data analysis of wi-fi traffic,” IEEE Transactions on Mobile Com-
puting, vol. 17, no. 5, pp. 1033–1047, 2017.

[8] A. Sivanathan, H. H. Gharakheili, F. Loi, A. Radford, C. Wijenayake,
A. Vishwanath, and V. Sivaraman, “Classifying iot devices in smart
environments using network traffic characteristics,” IEEE Transactions
on Mobile Computing, vol. 18, no. 8, pp. 1745–1759, 2018.

[9] M. R. Shahid, G. Blanc, Z. Zhang, and H. Debar, “Iot devices recog-
nition through network traffic analysis,” in 2018 IEEE international
conference on big data (big data). IEEE, 2018, pp. 5187–5192.

[10] Y. Meidan, M. Bohadana, A. Shabtai, J. D. Guarnizo, M. Ochoa,
N. O. Tippenhauer, and Y. Elovici, “Profiliot: A machine learning
approach for iot device identification based on network traffic analysis,”
in Proceedings of the symposium on applied computing, 2017, pp. 506–
509.

[11] L. Bai, L. Yao, S. S. Kanhere, X. Wang, and Z. Yang, “Automatic device
classification from network traffic streams of internet of things,” in 2018
IEEE 43rd conference on local computer networks (LCN). IEEE, 2018,
pp. 1–9.

[12] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and J. Lloret, “Net-
work traffic classifier with convolutional and recurrent neural networks
for internet of things,” IEEE Access, vol. 5, pp. 18 042–18 050, 2017.

[13] M. Andreoni Lopez, D. M. F. Mattos, O. C. M. B. Duarte, and G. Pujolle,
“A fast unsupervised preprocessing method for network monitoring,”
Annals of Telecommunications, vol. 74, no. 3, pp. 139–155, Apr 2019.

[14] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, 2016, pp. 785–794.


