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Abstract: Machine Learning mechanisms for network intrusion detection systems lack accurate
evaluation, comparison, and deployment due to the scarcity of well-constructed
datasets. In this paper, we propose a statistical analysis of the features contained in
four highly-used security datasets. We conclude that the analyzed datasets should not
be used as a benchmark for creating novel anomaly-based mechanisms for intrusion
detection systems. The analyzed datasets introduce a biased classification since
features are over-correlated, and most of the features are capable of making a
complete distinction between normal and attack flows. Our proposed methodology
analyzes the correlation among features instead of checking for redundant values or
data imbalance. The results align with the performance of three machine learning
techniques. We show that biased classification occurs due to a significant difference
between attack and normal data. The syntactically generated features are statistically
different between normal and attack classes, which implies overfitting in the machine
learning approaches.
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Dear Editor and Reviewers,

We greatly appreciate the effort and time spent on our manuscript. We would like to
thank all the reviewers for their suggestions. After all of the reviewer’s valuable
remarks, we are confident that the paper is in better shape and hopefully ready for
publication.

Please consider the revised version of our manuscript entitled “A Statistical Analysis of
Intrinsic Bias of Network Security Datasets for Training Machine Learning
Mechanisms” for publication in the Annals of Telecommunications journal. In this
revision, we address the reviewers’ comments, highlighting our changes with a blue
font in the manuscript. In our response below, we provide specific answers to the
reviewers’ comments and concerns.

Best regards,

João Vitor Valle Silva,
Nicollas Rodrigues de Oliveira,
Martin Andreoni Lopez,
Dianne Scherly Varela de Medeiros,
Diogo Menezes Ferrazani Mattos

Reviewer reports

Reviewer #2:

Overall, my conclusion from reading the manuscript is that the results tell a different
story from the abstract and introduction. The authors indicate that the datasets lead to
biased results. Then, they perform some analysis of feature correlation, and remove
this correlation using feature selection techniques. However, at the end, the outcome of
the models using three feature selection techniques is mostly similar to the outcome of
a model trained using all the features. This result, in my point of view, contradicts the
argument of the authors.

Response to Reviewers: We thank the reviewer for the attentive read of our paper, but
we kindly disagree with the reviewer's statement since the similarity between the
results with and without the feature selection procedure does not nullify the bias
argument. Indeed, such results corroborate the biased generation of the analyzed
datasets since, regardless of the selected features, all algorithms managed to
substantially differentiate regular traffic from attack traffic.

Another point worth commenting is that the test methodology requires improvement.
There are a number of parameters of the algorithms that should have been provided
on the text. I would like to see more details on the chosen hyperparameters, as well as
the choice of algorithms.

Response to Reviewers: As requested, we insert Tables 2-4 (new ones) containing
more information about the hyperparameter values configured in the Logistic
Regression, Decision Tree, and Random Forest algorithms, respectively. We also
highlight that the hyperparameters choice was performed as a greedy optimization
problem. We performed a greedy search to optimize the analyzed classifiers. However,
optimizing classifiers performance is not the scope of the paper.

“Data not related to network attacks are removed at this stage, selecting only DoS or
probing attack classes” Please explain why this was done. I assume that a real IDS
would also need to classify traffic as normal, so it seems odd to remove normal traffic.

Response to Reviewers: We emphasize that the removal procedure was performed to
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discard attacks on layers higher than the transport layer, because the paper scope is
on network-related attacks and not on the application-level attacks. The removal
procedure refers to attacks other than DOS or probing, not normal traffic. The normal-
behaved traffic was kept in the analyzed datasets. To avoid this misinterpretation, we
rewrite this snippet clarifying what data is actually kept after the preprocessing stage.
“Data not related to network attacks are removed at this stage, maintaining only data
related to normal traffic and DoS or probing attacks.”

Tables 2-4 need much more explanation. They provide features without explaining
what they are. Also, they do not provide numeric values for the feature importance.

Response to Reviewers: We thank the reviewer for the advice. We removed that
Tables that did not aggregate useful information to the paper.

Table 6 considers very simple classifiers. Also, the authors do not explain why they
chose these types of classifiers. As an example, I miss more modern techniques such
as a deep neural network. Why should someone use decision trees, logistic regression
and random forest only as state of the art? There are a number of models that are
more popular, including the algorithms based on trees, such as XGBoost.

My proposal for the authors is to show results for one algorithm of each class, e.g.
dimensionality reduction, neural networks, tree-based algorithms, etc.

Response to Reviewers: We stress that the focus of the paper is not on evaluating
classifiers’ performance, but we focus on testing the existence of bias on well-known
security datasets. Hence, we chose to deploy the most common classifiers as they
perform accurately for the selected dataset. As suggested by the reviewer, we enriched
the comparative analysis by adding results from a tree-based algorithm, XGBoost. The
hyperparameters and the results of applying this algorithm to the different datasets are
shown in Tables 5 and 7-10, respectively. The inclusion of the algorithm in the analysis
was accompanied by a brief explanation of it in Section 3, as seen in the text below.
“Although equally decision tree-based, the XGBoost algorithm differs from Random
Forest in two main aspects, in which the first is the decision tree creation process. In
practice, while Random Forest trains each tree independently and using random
samples, XGBoost applies a sequential ensemble technique that builds each tree in
turn. In this approach, each data value is weighted according to its probability of being
selected by a decision tree for further analysis. The second main difference relies on
when the results are combined. Random Forest algorithm traditionally performs an
averaging or majority voting at the end of the process, while XGBoost combines results
along the way. Such features ensure that XGBoost, when properly tuned, performs
better than Random Forest.”

Another important issue on the manuscript is that it lacks information about the
hyperparameters used on each model. Furthermore, the authors should have
commented how they tackled the issue of hyperparameter optimization.

Response to Reviewers: As mentioned previously, information about the
hyperparameters used in the algorithms is expressed in Tables 2-4. It is noteworthy
that such hyperparameters are derived from a simple greedy-search process since we
intend to demonstrate that such datasets are biased even in the worst case of choice.

The authors do not mention how they split the existing datasets into train-test-validate
sets. As an example, the CICBotnet 2014 has only train and test sets, so the authors
had to perform their own split for validation.

Response to Reviewers: To clarify the percentage of split adopted, the excerpt below
was added in Section 4. Due to the high accuracy, we did not identify the need for a
validation step.

“After the removal procedure, each dataset is split with 70% for training and the
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remainder for testing.”

Section 6 mentions the results for feature selection, however I did not find in this
section themention as to which features were selected? Was it a top-X approach? If so,
how did the authors choose the value of X?

Response to Reviewers: In the feature selection stage, we opted for the top-15
approach for each method applied. We choose the 15 most important features as a
trade-off between data representation and useful information. Thus, 15 features
against all features were necessary and sufficient to show that feature selection is not
a confusing factor for the conclusion that the datasets introduce a biased assumption
that the classifiers are accurate. Given the analysis of 4 datasets with distinct features,
the inclusion of all selected characteristics would occupy an excessive amount of
space and would be of little use. Even so, to clarify this issue, we include the excerpt
below.

“It is noteworthy that the executed algorithm used the 15th most important feature
returned by each feature selection method. This choice was based on the trade-off
between data representation and useful information.”

Overall, the results on tables 6-9 are very similar, no matter which method for feature
selection, or if feature selection was not used whatsoever. My personal conclusion is
that feature selection does not impact the final result. Also, it shows no real difference
over any of the feature selection techniques.

Response to Reviewers: We agree with the reviewer. Indeed, the paper aims to show
that feature selection has low impact on the final accuracy of classifiers, since the
datasets’ construction processes are biased. The convergence of results for similar
and high values is another indication that the datasets used, known as a reference in
the IDS field, have bias problems. We demonstrated that even applying untuned
algorithms, it was possible to achieve high accuracy, precision, and F1-score values
regardless of the feature selection method adopted.

Reviewer #3:

The first objective of the paper is to propose a statistical analysis of machine learning
datasets for network security. This approach can be considered as an alternative for
creating Intrusion Detection Systems. There are several contributions in this paper.
First, the statistical analysis of four network security datasets; second, determine the
most important shortcoming of the available datasets and finally, evaluate the quality of
available datasets for machine learning. For this last point the authors show the
weaknesses of the current datasets.

So, the authors deal with the reliability when applying different security datasets: NSL-
KDD, the UNSW-NB15, CICIDS 2017, and CICBotnet 2014. The objective is to
evaluate Intrusion Detection Systems. They analyze the statistical properties of dataset
features. They identified some dataset flaws that introduce bias when applying
machine learning classification models. The results show some important variances
between the different approaches and methodologies to model the data for predicting
the attacks. Then, they generalize the results to handle real-time data. Moreover, they
show that running against real-world traffic should consider other datasets to be
validated.
The study carried out is extremely important and shows that the use of machine
learning techniques can give rise to highly biased results depending on the dataset. In
addition, there are more and more attacks against datasets themselves by producing
false datasets that lead to results contrary to what the user wants. In the same way,
datasets can be manipulated to greatly falsify the results.
This paper is important by evaluating the models' performance and it is shown that a
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higher accuracy is obtained when comparing the results of different works addressing
the same problem.
The authors conclude that the Random Forest model is the most efficient technique for
detecting the attacks.

As a conclusion, the paper is well written and may be accepted for publication in the
Annals of Telecommunications after improving the paper according to the reviewers
remarks

Response to Reviewers: We thank the reviewer for recognizing the contribution of the
paper.
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2 João Vitor V. Silva et al.

1 Introduction

Intrusion Detection Systems (IDS) aim to monitor and analyze network traf-
fic and automatically discriminate possible threats from normal user behav-
ior [1,2,3]. Network operators rely on these systems as the main pillar of
their security tools to avoid disruption of network services and create secure
environments for their applications [4]. Intrusion Detection Systems are rule
or anomaly-based. Rule-based IDSes depend on a set of policies to identify
threats in the network. On the other hand, the anomaly-based approach infers
the system’s normal behavior and classifies as anomaly all the traffic differing
from the inferred normal behavior.

A recent report from Stott and May company unveils that IDSes based
on machine learning models are an actual trend in securing networks. Almost
half of the cybersecurity employees believe that machine learning is a timely
solution for security problems since a critical problem is to deploy more than
50 different tools for performing security tasks 1. Although machine learning-
based IDSes may either deploy rule or anomaly-based approaches, both depend
on a large dataset as input to train the machine learning model. In this context,
the KDD’99, and its variations, is a classical dataset and is still one of the
most used datasets by the network security community. Although KDD’99
has known flaws and some alternatives are available in the literature, it is still
considered a starting point for many new approaches and proposals of IDSes.

This paper proposes a statistical analysis of network security-intended
datasets, which are considered an alternative for creating Intrusion Detec-
tion Systems. The statistical analysis considers datasets that aim to surpass
the inadequacy of previous KDD-99 and NSL-KDD. We analyze and compare
CIC-IDS 2017, UNSW-NB15, and CIC-Botnet 2014 [5,6,7] datasets. Neverthe-
less, we show that these datasets still contain pitfalls. Our analysis evaluates
the data adequacy to the classification problem statement and its overfitting
potential. The datasets’ intrinsic characteristics are the main focus of the anal-
ysis, such as comparing the correlation between the variables and the use of
hypothesis tests to verify the statistical relevance of each variable. The analy-
sis is helpful to understand the feasibility of some obtained results. We further
discuss why the models have accuracy above the expected threshold and why
the classifiers’ performance is close to the ideal.

The main contributions of this paper are: i) the statistical analysis of four
network security datasets; ii) the highlighting of these datasets’ most impor-
tant shortcomings; and iii) an evaluation of the main datasets through machine
learning methods showing the introduction of bias in the models.

The rest of the paper is organized as follows. Section 2.1 explains the mo-
tivation and main characteristics of security datasets. Section 3 introduces the
machine learning techniques. Section 4 explains the methodology we employ
for the datasets’ analysis. In Section 5, we statistically analyze the main se-

1 Available at https://resources.stottandmay.com/hubfs/Research/Cyber\

%20Security\%20in\%20Focus\%202020_web-2.pdf.
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curity datasets. Section 6 presents the results and discusses the performance
of the machine learning models. Section 7 discusses the related work. Finally,
Section 8 concludes the paper.

2 Security Datasets

Intrusion Detection Systems relate to monitoring and analyzing the events
that occur in a computer system or a network aiming to find traces of in-
trusions or threats [8]. An IDS can be implemented as software that runs
on top of hardware dedicated to network analysis [2,3]. There are different
approaches to implement an IDS [8,9,10,11], which discriminate into three
categories: signature-based detection, anomaly-based detection, or protocol
dynamic analysis-based systems. A signature-based detection system aims to
find patterns or traces that correspond to a threat, or a known attack, compar-
ing known patterns towards identifying a possible intruder. An anomaly-based
detection system seeks to distinguish a malicious from a normal behavior. It
typically tracks the network connections, hosts, and users’ activities. Besides,
a dynamic protocol analysis-based system achieves similar results as anomaly-
based systems. However, it performs a behavioral analysis inside the protocol
layers, which needs access to generic profiles for each protocol from a develop-
ment standpoint.

The more prevalent approaches are anomaly detection, and signature de-
tection [12,9,10]. However, other criteria differently categorize IDS approaches
[8]. According to Liao et al., there are five types of IDS approaches: statisti-
cal, pattern-based, rule-based, state-based, or heuristic approaches. Statisti-
cal approaches rely on statistical metrics, such as mean and standard devia-
tion. Pattern-based approaches aim to recognize attacks by comparing network
traces against known attack traces. Model-based approaches consider states
comparison between different traces using a state machine that depends on
if-then-else logic to recognize patterns. An approach based on heuristics in-
spires biological concepts and uses artificial intelligence to determine whether
an attack occurs.

2.1 The KDD’99 Dataset and its Variants

In 1997, the Defense Advanced Research Projects Agency (DARPA), the
North-American public agency responsible for ensuring national security
against cyber-attacks and cyber-terrorism, and Lincoln Labs at Massachusetts
Institute of Technology (MIT) developed a program towards assessing the re-
search on network security. They created a dataset [13] that includes the sim-
ulation of a series of intrusion techniques in a military network. The network
operated according to legitimate behavior, but it suffered various attack at-
tempts for the sake of evaluating the IDS capabilities. KDD’99 dataset [14]
is a variant of the original DARPA dataset, whose development focused on
the data mining competition “Knowledge Discovery in Databases”. KDD’99
dataset counts with approximately 5 million samples, which are traces of the
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4 João Vitor V. Silva et al.

network raw traffic. Each sample in the dataset is a flow that categorizes as
normal or any other specific attack type. The simulated attacks are Denial-of-
Service (DoS), User-to-Root, Remote-to-Local, and Probing attack. Attacks
are labeled and distributed according to Table 1.

Table 1: Attack Types and Respective Classes

Class Attack Type

DOS back, land, neptune, pod, smurf, teardrop

U2R buffer overflow, loadmodule, perl, rootkit

R2L ftp write, guess password, imap, multihop, phf, spy,
warezclient, warezmaster

Probe ipsweep, nmap, portsweep, satan

In this work, we deploy NSL-KDD dataset 2, which aims to mitigate possi-
ble inconsistencies of the KDD’99 dataset, to provide a more realistic dataset,
and to assure more realistic prediction results [15]. Hence, the NSL-KDD is an
improvement of the original KDD’99 dataset. Tavallaee et al. describe a series
of misconceptions inherent to the KDD’99 dataset, and propose splitting the
data into two datasets, KDD Train+ and KDD Test+ [15]. One of the key
advantages of these new datasets is removing redundant samples in train and
test sets. In this way, the trained classifiers tend not to be biased, and the
performance of the learners tends not to be biased by methods that have bet-
ter performance on more frequent records, such as Support Vector Machine
(SVM).

The number of attacks reduced 93.32% in the train dataset, and 88.26%
in the test dataset. However, the reduction in the number of attacks does
not impact the models’ overall accuracy and improves the processing time, as
model training becomes faster than using the original dataset.

2.2 The UNSW-NB15 Dataset

Moustafa et al. developed a comprehensive dataset to evaluate Network-based
Intrusion Detection Systems, intending to replace the outdated KDD-99 and
NSL-KDD datasets [16]. The UNSW-NB15 [6] is the result of a challenge for
the cybersecurity research group at the Australian Centre for Cyber Security.
The raw network traffic flows of the UNSW-NB 15 dataset were created us-
ing the IXIA PerfectStorm tool, generating a hybrid of real modern normal
activities and synthetic contemporary attack behaviors.

Using the Tcpdump tool to capture about 100 GB of the raw traffic (e.g.,
Pcap files), the dataset contains nine types of attacks, including Fuzzers,
Analysis, Backdoors, DoS, Exploits, Generic, Reconnaissance, Shellcode, and
Worms. Argus and Bro-IDS tools are used, and twelve algorithms are devel-
oped to generate 49 features with the class label.

2 Available at https://www.unb.ca/cic/datasets/nsl.html.
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2.3 CICIDS 2017 Dataset

Sharafaldin et al. develop the CICIDS 2017 dataset [5] that contains normal
traffic and common attacks, resembling real-world network traffic [17]. To gen-
erate realistic traffic data, the B-Profile System [17] was used to profile the
abstract behavior of human interactions and generate naturalistic benign back-
ground traffic. In the dataset, abstract behaviors were generated for 25 users
based on HTTP, HTTPS, FTP, SSH, and email protocols. The implemented
attacks include Brute Force FTP, Brute Force SSH, DoS, Hearthbleed, Web
Attack, Infiltration, Botnet, and Distributed Denial of Service (DDoS).

The dataset creation took place in a testbed environment, and the testbed
implements two networks, namely Attack-Network, and Victim-Network. The
Victim-Network is a highly secure infrastructure composed of a firewall, router,
switches, and a combination of the most common operating systems and an
agent to provide each host’s benign behavior. The Attack-Network is a separate
infrastructure composed of a router, a switch, and hosts with public IPs and
different operating systems for running attack scenarios.

2.4 CICBotnet 2014 Dataset

Beigi et al. introduces the CICBotnet Dataset [7] that addresses three primary
needs in botnet detection approaches: (i) the low generality of data, (ii) the
lack of realism, and (iii) the representativeness of network traffic tracking [18].
Faced with these barriers, the CICBotnet Dataset merges three other datasets
in a non-overlapping way. Since there is a wide range of IP addresses in these
datasets, the merging process first passes through a mapping. Botnet IPs are
correlated with hosts outside the current network using a packet generator.
Subsequently, malicious and benign traffic were replayed using TCPReplay 3

and captured by TCPdump as a one-piece dataset. In its final version, CI-
CBotnet Dataset comprises a training and test subset containing 7 and 16
types of botnets distributed in the malicious portion, respectively.

Regarding the CICBotnet’s test subset, after collected and labeled ade-
quately as malicious or benign traffic, all data traffic is submitted to flowt-
bag 4, an open-source software whose purpose is extracting 45 flow features
from a given capture file. Among these features, there is information about
flow tuple (IP addresses, ports, and transport protocol), packets and byte in
forward and backward directions, packets statistics in forward and backward
directions, the time between packets in forward and backward directions, flow
time statistics, subflow packets and bytes in forward and backward directions,
TCP flags, bytes in headers, and type of service [3].

3 Available at https://tcpreplay.appneta.com/.
4 Available at https://github.com/DanielArndt/flowtbag.
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6 João Vitor V. Silva et al.

3 Machine Learning Models

Machine learning techniques are commonly divided into supervised and un-
supervised learning. In supervised learning algorithms, the training set con-
tains labeled samples, i.e., there is a dataset in which data are categorized
with the correct target class a priori to train the classifier [19]. A supervised
algorithm learns while reading and processing the labeled data and then ad-
justs statistical model parameters to predict unseen and non-classified data.
Examples of supervised learning algorithms are Classification and Regression
models. In unsupervised learning, there is a lack of previous knowledge about
the dataset. Hence, the model searches for patterns on the data to extract
any information about the dataset. Compared to supervised learning, unsu-
pervised learning algorithms perform a more complex task, and the results
tend to be more unstable. Examples of unsupervised learning algorithms are
Clusterization and Association Rules algorithms. In this paper, we consider
three supervised learning algorithms as follows.

Tree-based classifiers, also called Classification and Regression Trees, or
Decision Trees, are effective and popular for discriminating network traffic.
Decision trees and variations, Boosted Trees, and Random Forests classifiers
make the baseline for the most advanced predictive models and are widely
used in data science applied to network traffic [2]. Tree-based algorithms start
the classification in a root node. The data split into two nodes; each node
splits again to generate other nodes, building the tree structure. The tree
grows continuously, without restrictions, until it reaches its maximum size,
i.e., all the splitting rules have been covered. The criteria for splitting nodes
is usually the entropy of features. Decision Trees have two techniques to avoid
overfitting. The first technique consists of limiting the maximum size of the
tree, reducing its complexity. The second technique defines criteria to split a
node, which analyzes whether a leaf has enough size, or splitting it introduces
a significant reduction of the Gini Impurity. This metric quantify how much a
feature contributes to enhancing nodes’ impurity.

Random Forest relies on bagging in decision trees, which introduces a
significant advantage. Besides sampling data, it also samples features. Bagging,
i.e., a bootstrap aggregator, is a basic grouping algorithm, which, instead of ad-
justing various models to the same data, adjusts each model to a bootstrapped
sample. In each stage, the choice for a data feature is limited to a random sub-
set of features. Compared to the Decision Tree algorithm, a basic Random
Forest algorithm adds two more steps, bagging and bootstrap sampling of the
features at each division. Random Forest thrives when a model is built for data
with many samples and features. It automatically determines what predictors
are significant and finds a complex relationship between them. There are two
ways to measure the feature importance in Random Forest. The first way is to
reduce the model’s precision and, thus, increases the entropy, while the second
one is to reduce the Gini Impurity. By default, Random Forests calculate the
feature importance based on Gini Impurity.
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Although equally decision tree-based, the XGBoost algorithm differs from
Random Forest in two main aspects, in which the first is the decision tree cre-
ation process. In practice, while Random Forest trains each tree independently
and using random samples, XGBoost applies a sequential ensemble technique
that builds each tree in turn. In this approach, each data value is weighted
according to its probability of being selected by a decision tree for further
analysis. The second main difference relies on when the results are combined.
Random Forest algorithm traditionally performs an averaging or majority vot-
ing at the end of the process, while XGBoost combines results along the way.
Such features ensure that XGBoost, when properly tuned, performs better
than Random Forest.

Logistic Regression is a classification algorithm based on the probability
and odds of whether an event occurs. Logistic Regression’s principal compo-
nents are the logistic response function and the logit function, that map the
probability for a more expansive scale given a linear modeling. The hypothesis
of Logistic Regression limits the Cost Function. The cost function estimates
the error between predicted values and expected values and presents it as a
single real number in the interval between 0 and 1. Logistic Regression, given
its name, uses the logistic function as cost, which derives from the sigmoid
function.

4 Pre-processing Setup

Figure 1 depicts the methodology adopted for each dataset employed in this
work. Thus, each dataset is first adjusted in a Pre-Processing Stage to suit
the data to a machine learning model. Data not related to network attacks
are removed at this stage, maintaining only data related to normal traffic and
DoS or probing attacks. After the removal procedure, each dataset is split with
70% for training and the remainder for testing. Subsequently, all categorical
features must be codified to the domain of real numbers or, depending on
the method, to a binary matrix with each category’s information. Besides, all
continuous variables must be normalized since data may present discrepancies
in the scale of values from different variables, which effect is mitigated by
scaling all variables to the same interval.

Once pre-processed, data are conducted to a Feature Selection and
Training Stage, in which different methods determine which variables, or
features, are the most important to machine learning to predict the correct
target class. This selection procedure is crucial to saving time and memory
resources when dealing with large datasets. Before the training procedure, the
training data is oversampled to balance the classes and consequently reduce
the probability of creating a biased model for the dominant class. Finally, in
the Test and Evaluation Stage, the validation and test data are applied
to previously trained models, generating results evaluated through the use
information retrieval metrics.

In the paper, we apply three different feature selection techniques and
compare them to predict target-class outcomes. The first one uses the Ran-
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Fig. 1: Dataflow containing all stages from data collection to machine learning
test and results.

dom Forest feature importance, which relies on reducing the Gini Impurity,
used as a rule to split a decision node [20]. The second one uses Recursive Fea-
ture Elimination, which selects features recursively considering smaller sets of
features. The third technique applies Mutual Information and returns the fea-
ture set that shows the highest dependency between selected features. Whether
variables are independent, the mutual information is equal to zero, and as the
value of Mutual Information increases, it denotes higher dependency between
the variables.

An imbalanced dataset implies that the number of records between classes
substantially differs. The class imbalance poses a problem to the machine learn-
ing model since statistical models tend to predict inaccurately less prevalent
classes, implying a model bias to the majority class. In this regard, Chawla
et al. proposed the SMOTE (Synthetic Minority Oversampling Technique)
method that is widely applied to correct data asymmetry without adding in-
formation to the dataset [21]. The SMOTE method resembles with K-Nearest
Neighbors (K-NN) and the Support Vector Machine (SVM) algorithms since
it selects some samples that are spatially near from others, according to a
predefined set limit, and these samples generate new synthetic samples that
fill the gap in between two minority data points.

5 Feature Analysis

Besides testing machine learning models and comparing their performance
metrics, there are different ways to extract useful information from the studied
datasets. Figures 2–5 show the heatmaps of the Pearson correlation coefficient
considering the variables with the highest sum of squares of the correlations
with the other variables. Besides, we analyze the correlation between variables
using the Kendall τ ranking. In parallel, we also employ Mann-Whitney U-test
to compare the distribution between attacks and normal traffic samples from
all the evaluated datasets, and check whether the two classes share the same
distribution.
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Table 2: Logistic Regression

Hyperparameters Value

C 1.0
class weight None
dual False
fit intercept True
intercept scaling 1
max iter 100
multi class auto
penalty l2
random state Non
solver lbfgs
tol 0.0001
verbose 0
warm start False

Table 3: Decision Tree

Hyperparameters Value

ccp alpha 0.0
class weight None
criterion gini
max depth None
max features None
max leaf nodes None
min impurity decrease 0.0
min impurity split None
min samples leaf 1
min samples split 2
min weight fraction leaf 0.0
random state None
splitter best

Table 4: Random Forest

Hyperparameters Value

bootstrap True
ccp alpha 0.0
class weight None
criterion gini
max depth None
max features auto
max leaf nodes None
max samples None
min impurity split None
min samples leaf 1
min samples split 2
n estimators 100
n jobs None
oob score False
random state None
verbose 0
warm start False

Table 5: XGBoost

Hyperparameters Value

base score 0.5
booster gbtree
colsample bylevel 1
colsample bynode 1
colsample bytree 1
gamma 0
gpu id -1
importance type gain
learning rate 0.3
max depth 6
min child weight 1
n estimators 100
n jobs 12
num parallel tree 1
random state 0
scale pos weight 1
tree method exact

5.1 Pearson Correlation Heatmap

A useful tool to evaluate the Pearson correlation between the continuous vari-
ables in the datasets is to plot a heatmap, which shows the correlation value
between the features’ magnitude through a chromatic range. As shown in
Figures 2–5 colors vary from red, i.e., positive correlation (heat), to blue, a
negative correlation (cold). The figures show that a small subset of features
possesses high correlation between themselves.

Figure 2 refers to the NSL-KDD heatmap. It is possible to verify three
groups of highly correlated features expressed by regions with a dense con-
centration of hot spots. It means that the Pearson correlation between the
variables have an impact of the choice of the variable as meaningful for clas-
sification.
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Fig. 2: Heatmap showing the Pearson correlation matrix between the features
of the NSL-KDD dataset with the highest sum of squares of the correlation
value.

Regarding the CICIDS 2017 dataset, Figure 3 shows a similar behavior,
but it contains two groups of features with strong positive correlation among
features (greater than 0.9). One group includes three features (Max Packet
Length, Packet Length Std and Bwd Packet Length Max ) and the other, five
features (Bwd Packet Length Mean, Avg Bwd Segment Size, Packet Length
Mean, Bwd Packet Length Std and Average Packed Size). A significant differ-
ence compared to Figure 2 is cold spots close to 0.5.

According to Figure 4, it is reasonable to state that the heatmap presents
two large group of highly correlated features for the UNSW-NB15 dataset.
However, only one of the groups has features that are also selected by the
three feature selection methods mentioned in Section 4.

Unlike the previous heatmaps, Figure 5 presents a well-defined division and
homogeneity of the features most correlated with each other, highlighting a
group composed of five features (sflow bpackets, total bpackets, sflow bpackets,
total fpackets, sflow bbytes) and another containing the remaining features.
In addition, it is possible to separate this last and most populous group of
hot spots into two subsets of features that are even more correlated. When
adopting a correlation value greater than 0.96, we find two subsets of five fea-
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Fig. 3: Heatmap showing the Pearson correlation matrix between the features
of the CICIDS 2017 dataset with the highest sum of squares of the correlation
value.

tures each, in which the first is composed of max active, duration, min active,
mean active and the second subset includes mean fiat, mean biat, min fiat and
min biat.

The analysis indicates a presence of two or more groups with strong positive
Pearson correlation in different datasets as verified by Figures 5–4. In each of
the heatmaps, highly correlated variables behave as linear combination of them
and may be interpreted as one single variable that gives the same information,
and since all of these features are chosen to train the machine learning model,
it decreases the information gain, while moving the trained model towards
overfitting. Thus, these selected variables are not linear independent.

5.2 Kendall Rank Correlation Coefficient

The Kendall τ Coefficient is a statistical measure of the ordinal association
between two quantities. Comparing the Kendall τ Coefficient between two
variables represents the statistical dependence of the two variables. A Kendall
τ test is a non-parametric hypothesis test for statistical dependence. The anal-
ysis of the Kendall τ coefficient is important because variables with the highest
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Fig. 4: Heatmap showing the Pearson correlation matrix between the features
of the UNSW-NB15 dataset with the highest sum of squares of the correlation
value.

coefficient values are highly correlated to the target variable, and, thus, the
classifier that uses such variables is biased and cannot be generalized.

Figures 6–9 show the Kendall τ Coefficient for the continuous variables in
the datasets. It considers the statistical dependence of each feature concerning
the target class. Considering the NSL-KDD, the variable same srv rate pos-
sesses the highest Kendall coefficient value, reaching 0.68. For the CICIDS 2017
dataset, the variable that has the highest Kendall coefficient is Min Packet
Length and reaches 0.32. Considering the UNSW-NB15 dataset the variable
sttl possesses the highest Kendall coefficient, that is 0.7. For the CICBotnet
dataset, the variable min fpktl reaches the highest Kendall coefficient value,
and is equal to 0.25. Therefore, we show that in NSL-KDD and UNSW-NB15
the most correlated variables with the target class carry significant information
that leads to artificially accurate models. Indeed, the variable same srv rate
indicates the data rate for the same server, which highly correlates to the DoS
attacks and, for UNSW-NB15, the variable min fpktl indicates the minimum
length of packets in the forward direction, which relates to synthetic attack
generation with small packets.
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Fig. 5: Heatmap showing the Pearson correlation matrix between the features
of the CICBotnet 2014 dataset with the highest sum of squares of the corre-
lation value.

5.3 Mann-Whitney U-Test

Hypothesis tests, also called confirmatory data analysis, are ubiquitous in sta-
tistical analysis and work as an inference method. A hypothesis test is a ran-
dom experiment to evaluate if randomness is a plausible explanation for the
difference between two test groups. In executing a hypothesis test, the goal is
to verify two affirmatives: the alternative hypothesis and the null hypothesis.
The experiment raises the alternative hypothesis because it aims to explain
the results obtained by recurring to an alternative pattern. The null hypothe-
sis is that the results obtained are not enough to sustain the first affirmative,
which means that event occurred by chance. The goal of any study that in-
volves a hypothesis test is to determine if the null hypothesis can be rejected
or not. Discovering that there is a difference in the effects generated by dif-
ferent groups, the null hypothesis can be rejected and accept the alternative
hypothesis.

The p-value is an efficient way to measure the statistical significance. A
p-value lesser or equal to the significance threshold (commonly used 0.05) is
statistically relevant, indicating strong evidence against the null hypothesis
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Fig. 6: Kendall τ coefficient between the KDD Train+ continuous features and
the target variable. There is a high correlation between the nominal variables
and the target class.

because it indicates a probability less than 5% that the null hypothesis is
correct.

The Mann-Whitney U-Test is used to evaluate if two comparable samples
present the same data distribution. If confirmed, the Null Hypothesis is proven,
implying stochastic equality between two samples [22]. In counterpart, the
Alternative Hypothesis verifies if two samples are distinct from each other. To
check the hypothesis related to the comparison between two samples, three
conditions must be respected [22]:

1. The two analyzed samples must be composed of random data obtained
from the population. The concept aims to mitigate measuring errors and
sample size;

2. Each observation in a sample must be independent, and the samples must
be independent of each other;

3. The samples must compose of numeric and continuous values.

In this work, the U-Test aims to compare two groups, attack and normal
traffic, considering all the continuous variables in the datasets given a signif-
icance threshold of 0.05. Thus, for each variable whose p-value exceeds the
threshold, the test fails to reject the null hypothesis. Consequently, it is not
possible to assure that the samples are stochastically different.

Table 6 shows the Mann-Whitney hypothesis test results considering each
dataset with the respective variables where the p-value is greater than 0.05,
for a significance level of 95%, which means that it is not possible to reject
the null hypothesis and, then, the attack flows statistically behave like normal
flows. From the collected p-values, almost all the considered variables reject
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Fig. 7: Kendall τ coefficient between the CICIDS 2017 continuous features and
the target variable. There is a high correlation between the nominal variables
and the target class.

the null hypothesis, except for the ones in Table 6, meaning that these features
distinguish attack traffic from normal traffic.

6 Results and Discussion

To assess each classifier’s performance, we consider accuracy, precision, F1-
Score, and sensibility (Recall) metrics. Another helpful metric is the Receiver
Operating Characteristic (ROC) curve, which exhibits, for a given rate of False
Positive values, how does that affect the True Positive Rate in the classifier
predictions. The Area Under the ROC Curve provides more explicit informa-
tion about the ROC curve, as an area that is close to 1 represents a correct,
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Fig. 8: Kendall τ coefficient between the UNSW-NB15 continuous features and
the target variable. There is a high correlation between the nominal variables
and the target class.

Fig. 9: Kendall τ coefficient between the CICBotnet 2014 continuous features
and the target variable. There is a high correlation between the nominal vari-
ables and the target class.

but extremely specified, model while an area that is approximately 0.5 corre-
sponds to a random model. Thus, an area that is almost equal to 1 is a strong
clue of model overfitting.

Tables 7–10 reunite the results for the best classifiers in combination with
each feature selection method (RFE, Random Forest Importance, and Mutual
Information), when adopting attack prediction metrics to distinguish the an-
alyzed datasets. Considering Random Forest as the best classifier, Figure 10
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Table 6: Continuous numerical variables with Mann-Whitney test results dif-
ferent from zero.

Dataset Feature Label Mean Std U-Stat P-value

Botnet 2014 mean biat F20 552.856 3584.327 47600695.0 0.376

NSL-KDD hot F4 0.139 1.706 49630951.5 0.429

CICIDS-2017

Bwd IAT Total F26 9950727 28826015.2 31727053.0 0.266

Bwd IAT Mean F27 1795244 8825502.1 31718482.0 0.257

Bwd IAT Max F29 4687013 17160506.1 31618835.5 0.165

depicts the associated ROC curves for the analyzed datasets with each curve
representing a feature selection method. It is noteworthy that the executed
algorithm used the 15th most important feature returned by each feature se-
lection method. This choice was based on the trade-off between data represen-
tation and useful information.

Considering the results shown in Tables 7–10, for the UNSW-NB15 dataset,
Random Forest Classifier using Mutual Information is considered the best
configuration as it has the highest Precision, although the F1-Score is tied
with the Random Forest Importance feature selection method. For Botnet
2014, Random Forest Classifier with RFE as feature selection gives the best
Recall compared to the other methods. For NSL-KDD, although the results are
paired, Random Forest Importance gives the best Recall value. For CICIDS
2017, the Random Forest Classifier combined with the RFE gives the best
results. Tables 2–5 depict the machine learning models’ hyperparameters after
the training step in the Feature Selection and Training Stage.

Table 7: Classification results by Feature Selection Method for CICIDS 2017.

Feature
Selection
Method

Metrics

Machine Leaning Models

Decision
Tree

Logistic
Regression

Random
Forest

XGBoost

No Feature
Selection

Accuracy 1.00 0.93 1.00 1.00

Precision 1.00 0.81 1.00 1.00

Recall 1.00 0.84 1.00 1.00

F1-Score 1.00 0.83 1.00 1.00

Random Forest
Importance

Accuracy 0.99 0.86 0.99 0.99

Precision 0.97 0.60 0.97 0.98

Recall 0.98 0.94 1.00 1.00

F1-Score 0.99 0.73 0.99 0.99

Recursive
Feature
Elimination

Accuracy 0.99 0.85 0.99 0.99

Precision 0.99 0.58 0.99 0.98

Recall 0.99 0.93 1.00 1.00

F1-Score 0.99 0.71 0.99 0.99

Mutual
Information

Accuracy 0.99 0.87 0.99 0.99

Precision 0.98 0.62 0.98 0.98

Recall 1.00 0.94 1.00 1.00

F1-Score 0.99 0.75 0.98 0.99
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Table 8: Classification results by Feature Selection Method for NSL-KDD.

Feature
Selection
Method

Metrics

Machine Leaning Models

Decision
Tree

Logistic
Regression

Random
Forest

XGBoost

No Feature
Selection

Accuracy 0.98 0.94 0.98 0.98

Precision 0.96 0.91 0.96 0.97

Recall 0.99 0.96 1.00 0.99

F1-Score 0.97 0.93 1.00 0.98

Random Forest
Importance

Accuracy 0.97 0.92 0.98 0.98

Precision 0.96 0.89 0.96 0.96

Recall 0.96 0.90 1.00 0.99

F1-Score 0.96 0.90 0.98 0.98

Recursive
Feature
Elimination

Accuracy 0.97 0.92 0.98 0.98

Precision 0.96 0.90 0.96 0.96

Recall 0.96 0.92 0.99 1.00

F1-Score 0.96 0.91 0.98 0.98

Mutual
Information

Accuracy 0.97 0.91 0.98 0.97

Precision 0.96 0.90 0.96 0.96

Recall 0.97 0.88 0.99 0.99

F1-Score 0.96 0.89 0.98 0.97

Table 9: Classification results by Feature Selection Method for UNSW-NB15.

Feature
Selection
Method

Metrics

Machine Leaning Models

Decision
Tree

Logistic
Regression

Random
Forest

XGBoost

No Feature
Selection

Accuracy 0.86 0.78 0.87 0.86

Precision 0.82 0.73 0.81 0.97

Recall 0.95 0.95 0.99 0.73

F1-Score 0.88 0.82 0.89 0.83

Random Forest
Importance

Accuracy 0.85 0.78 0.88 0.87

Precision 0.83 0.74 0.84 0.94

Recall 0.93 0.93 0.96 0.78

F1-Score 0.88 0.83 0.90 0.85

Recursive
Feature
Elimination

Accuracy 0.85 0.78 0.87 0.89

Precision 0.82 0.74 0.84 0.97

Recall 0.93 0.93 0.96 0.78

F1-Score 0.87 0.83 0.89 0.86

Mutual
Information

Accuracy 0.88 0.78 0.89 0.89

Precision 0.85 0.73 0.86 0.94

Recall 0.94 0.94 0.95 0.82

F1-Score 0.89 0.82 0.90 0.88

It is noticeable that, according to Tables 7–10, there are differences in the
results obtained for each dataset. Figures 10a–10b, which contain the ROC
curves considering the CICIDS 2017 and NSL-KDD datasets, show a near-
perfect curve. On the contrary, the ROC curves for UNSW-NB15 and Botnet
2014 display a more realistic ROC curve. Considering the ROC curves, Mutual
Information displays the best AUC values, meaning that using this feature
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Table 10: Classification results by Feature Selection Method for Botnet 2014.

Feature
Selection
Method

Metrics

Machine Leaning Models

Decision
Tree

Logistic
Regression

Random
Forest

XGBoost

No Feature
Selection

Accuracy 0.91 0.75 0.92 0.91

Precision 0.92 0.73 0.91 0.91

Recall 0.92 0.94 0.96 0.95

F1-Score 0.92 0.82 0.94 0.93

Random Forest
Importance

Accuracy 0.89 0.73 0.91 0.89

Precision 0.92 0.80 0.92 0.91

Recall 0.90 0.74 0.94 0.91

F1-Score 0.91 0.77 0.93 0.91

Recursive
Feature
Elimination

Accuracy 0.90 0.73 0.92 0.90

Precision 0.92 0.79 0.92 0.92

Recall 0.91 0.77 0.95 0.93

F1-Score 0.91 0.78 0.93 0.92

Mutual
Information

Accuracy 0.89 0.73 0.91 0.89

Precision 0.91 0.79 0.92 0.91

Recall 0.91 0.74 0.94 0.92

F1-Score 0.91 0.77 0.93 0.92

selection method successfully reduces the information loss and gives a more
accurate classifier.

According to the previous section, it is possible to understand that the
heatmaps explain the ROC curves for the NSL-KDD and CICIDS 2017, Fig-
ures 2–3. The heatmaps display clusters of variables that are highly correlated
and behave as one single variable. Since a considerable number of highly cor-
related variables are used to train the machine learning models and are also
correlated to the target variable 6–7, the training generates a biased model
that leads to overfitting.

The analysis regarding the UNSW-NB15 and Botnet 2014 are explained
by analyzing the heatmaps on Figures 4 and 5. The heatmaps show highly
correlated variable clusters that may lead to loss of information, reducing the
accuracy of the trained models. Besides, the Kendall ranking correlation shows
less correlated variables to the target variable.

The Mann-Whitney hypothesis test answers whether the variables are sta-
tistically relevant for the target class prediction. Besides, the Mann-Whitney
test also shows whether the features of the dataset cause bias in the classifica-
tion. If the null hypothesis is not rejected, the two considered groups, attack
and normal, have an indistinguishable probability distribution, showing that
the attacks behave very similar to regular traffic. Nevertheless, as previously
verified, the most important selected features show different statistical be-
haviors between the attack and normal groups, implying distinguishability
between classes.

As shown in Table 6, it is possible to understand how the hypothesis test
results explain the accuracy of the studied models. For Botnet 2014 dataset,
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(a) CICIDS 2017 (b) NSL-KDD

(c) UNSW-NB15 (d) Botnet 2014

Fig. 10: ROC Curve with AUC values for Random Forest Classifier considering
different datasets. MI: Mutual Information, RFI: Random Forest Importance,
RFE: Recursive Feature Extraction, None: No Feature Selection

there is one variable mean biat that, by analyzing the p-value from the Mann-
Whitney hypothesis tests, fails to reject the null hypothesis while all the others
reject the null hypothesis, meaning that the probability distribution of these
variables for attack traffic and normal traffic differ. The impact from develop-
ing an IDS comes from the fact that including variables that clearly distinguish
between attack and normal distribution in the feature selection stage to train
a classifier increases the classifier probability of overfitting since these vari-
ables have a high weight distinguishing attack from normal traffic. The same
analysis repeats to the NSL-KDD, which possess only one variable (hot) that
fails to reject the null hypothesis, and CICIDS-2017, which has more variables
that fail to reject the null hypothesis (Bwd IAT Total, Bwd IAT Mean, Bwd
IAT Max ).

Many researchers have pointed out the deficiencies of the KDD’99 dataset.
However, we opted for an enhanced version of the dataset and considered
other datasets to give state-of-the-art results. It is still noticeable that there
are some inefficiencies in features. Factors such as the high correlation between
features, the correlation between features and the target class, and the different
statistical behavior between the group of samples of each target class cause bias
to the prediction algorithms. Therefore, it raises questions about the reliability
of the studied datasets to model state-of-the-art IDSs considering real-world
network data.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Title Suppressed Due to Excessive Length 21

7 Related Work

Tavallaee et al. point out some inherent issues in the KDD’99 dataset [15].
The issues include redundant data, unequal distribution of the attacks, which
hampers the process of cross-validation. The author also aimed to analyze
the precision of seven different machine learning classifiers, J.48, Naive Bayes,
NBTree, Random Forest, Random Tree, multi-layer Perceptron, and SVM.
According to their analysis, the J.48 model obtained the best results with
98.82% of accuracy.

Olusola et al. study the importance of the features from the KDD’99
dataset to discriminate the most important attacks [23]. By applying two met-
rics, entropy and rough set, the authors consider 10% of the KDD ’99 dataset
and ensure the redundant registers’ removal. To identify the degree of signifi-
cance of a specific feature, the authors adopted two approaches. The first one
focused on calculating the dependency degree for each class of attack based on
the number of instances inside the dataset. The second approach was based
on comparing the classes and detecting the relevant features that distinguish
one class from another. The results are in line with ours and indicate that a
particular feature has a great degree of importance, and, for some classes, a
single feature is enough to predict whether the sample is an attack or from
normal traffic.

Siddiqui et al. focus on establishing the relationship between the type of
attacks in the KDD’99 dataset and the network protocol. The proposal applies
clusterization algorithms [24]. The study shows that TCP networks suffered
most of the attacks, exploiting TPC/IP networks’ capabilities to execute at-
tacks, such as DoS, taking a long time before being detected. The UDP proto-
col suffered fewer attacks compared to TCP, about five types of attack. ICMP
suffered mostly DoS attacks because of the lack of validation in the messages.
ICMP is the target of only seven attack types in the dataset.

Depren et al. propose an IDS using a self-organized map to model the
behavior on the KDD’99 dataset [12]. They present a hybrid IDS whose archi-
tecture consists of a misuse module and an anomaly detection module besides
a support system to combine both modules’ results. They perform a C4.5 De-
cision Tree to identify the threats. The results show that the model obtained
an accuracy of 99.84%.

Hasan et al. identified some deficiencies inherent to the KDD’99 dataset, for
example, a significant number of redundant registers, which turn the dataset
imbalanced, and may cause the models to become more accurate to predict the
majority class [25,26]. A new dataset was developed (KDD99 Test+, KDD99
Train+) that eliminates redundant values and increases the models’ perfor-
mance to mitigate the KDD’99 issues. Hasan et al. measure the performance
of SVM with different kernel types, and conclude that each kernel is efficient
to a specific type of attack [25]. Later, the authors aim to compare SVM’s per-
formance with Random Forest Classifier, and they conclude that while SVM
has better accuracy, Random Forest takes less time to train the model [26].
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Al-Yaseen et al. study the original KDD’99 dataset as a basis to propose
a multi-level hybrid intrusion detection system that relies on the SVM and
extreme learning algorithms to improve detection of known and unknown at-
tacks [10]. The system uses a modified K-means algorithm to build a new small
training set, significantly reducing the training time and improving SVM’s per-
formance. The results show that the accuracy achieved is above 95.75%, with
a false alarm rate of 1.87%.

Panda et al. propose a hybrid approach using the combination of two clas-
sifiers to enhance the system performance [9]. The procedure firstly applies
classification or clusterization methods and then conducts the output data to
another classifier, determining whether a sample is an attack. The work re-
lies on the NSL-KDD dataset, the improved version of the KDD’99 dataset.
The authors perform some benchmarks over machine learning models, such as
Decision Trees, SVM, and Random Forest. The results show that the combi-
nation of the meta-classifier END (Ensembles of Balanced Nested Dichotomies
for Multi-class Problems) and Random Forest with ten trees produces an out-
of-bag error of 0.06 and 100% intrusion detection rate with 0% false alarm
rate.

Unlike previous work, our paper focuses on analyzing the correlation be-
tween features and the target class. Our work assumes the research hypothesis
that the most used network-security datasets present some highly correlated
features with the target class and, thus, introduce bias to the trained classi-
fiers. Our results support our hypothesis since, for NSL-KDD and CICIDS 2017
datasets, the high performance of the trained classifier is due to the selection
of over correlated features with the target class and the different probability
distributions between attack and normal traffic.

8 Conclusion

In this paper, we focused on investigating the reliability of the application of
different security datasets such as the NSL-KDD, the UNSW-NB15, CICIDS
2017, and CICBotnet 2014 to build and evaluate Intrusion Detection Systems.
We analyzed the statistical properties of dataset features. We identified some
dataset flaws that introduce bias when applying machine learning classifica-
tion models. Our results show that different approaches and methodologies to
model the data to predict attack traffic are biased to data. Thus, generalizing
the results to handle real-time data or running against real-world traffic should
consider other datasets to be validated.

Comparing each machine learning model according to the feature selection
method, we conclude that the Random Forest is the most efficient model in
detecting the attacks. We found that considering the metrics in the Tables 7–
10, Random Forest Classifier displays the best results combined with the RFE
feature selection method as it shows the best Recall compared to other feature
selection methods in the UNSW-NB15 dataset. For Botnet 2014 and CICIDS
2017, RFE shows the best results along with Random Forest Classifier, and for
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NSL-KDD, feature selection using Random Forest Importance is the most effi-
cient. We also compared Receiver Operating Characteristic curves for the best
technique for feature selection. The results display the ROC curves considering
the Random Forest as the best classifier, differentiating each feature selection
method. We show that Mutual Information gives the best AUC value, meaning
that this feature selection technique is more efficient in reducing information
loss when comparing the results obtained when no feature selection method is
applied. It is also notable that, analyzing other aspects of the dataset, a factor
that might be the root cause of the high performance is related to the genesis
process of features during the initial stages of constructing the datasets. The
correlation between most of the relevant features is high, and, thus, whether
there is no use of a feature selection method, the performance overall is still
noteworthy. In hypothesis tests, since most of the variables in all analyzed
datasets succeed in rejecting the null hypothesis, we conclude that most of
the datasets’ variables differentiate the attack from normal traffic, introduc-
ing bias to the machine learning classifier. Therefore, the network attacks in all
the datasets analyzed are not stealthy, and then, it introduces bias on training
IDS models with them.
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Response to Reviewers: In the feature selection stage, we opted for the top-15 approach for
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feature selection has low impact on the final accuracy of classifiers, since the datasets’
construction processes are biased. The convergence of results for similar and high values is
another indication that the datasets used, known as a reference in the IDS field, have bias
problems. We demonstrated that even applying untuned algorithms, it was possible to achieve
high accuracy, precision, and F1-score values regardless of the feature selection method
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The first objective of the paper is to propose a statistical analysis of machine learning datasets for
network security. This approach can be considered as an alternative for creating Intrusion
Detection Systems. There are several contributions in this paper. First, the statistical analysis of
four network security datasets; second, determine the most important shortcoming of the
available datasets and finally, evaluate the quality of available datasets for machine learning. For
this last point the authors show the weaknesses of the current datasets.

So, the authors deal with the reliability when applying different security datasets: NSL-KDD, the
UNSW-NB15, CICIDS 2017, and CICBotnet 2014. The objective is to evaluate Intrusion
Detection Systems. They analyze the statistical properties of dataset features. They identified
some dataset flaws that introduce bias when applying machine learning classification models.
The results show some important variances between the different approaches and methodologies
to model the data for predicting the attacks. Then, they generalize the results to handle real-time
data. Moreover, they show that running against real-world traffic should consider other datasets
to be validated.
The study carried out is extremely important and shows that the use of machine learning
techniques can give rise to highly biased results depending on the dataset. In addition, there are
more and more attacks against datasets themselves by producing false datasets that lead to results
contrary to what the user wants. In the same way, datasets can be manipulated to greatly falsify
the results.
This paper is important by evaluating the models' performance and it is shown that a higher
accuracy is obtained when comparing the results of different works addressing the same
problem.
The authors conclude that the Random Forest model is the most efficient technique for detecting
the attacks.

As a conclusion, the paper is well written and may be accepted for publication in the Annals of
Telecommunications after improving the paper according to the reviewers remarks
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