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Abstract—The rising of the Internet of Things (IoT) applica-
tions fosters the exponential increase of smart devices, expanding
the Internet’s attacking surface. Anomaly prediction mechanisms
are mandatory to anticipate security threats. Besides, traffic
monitoring and prediction models deliver more resilient and
efficient network services. This paper proposes a lightweight user-
behavior prediction mechanism based on the decomposition of
the network traffic features’ entropy through Discrete Wavelet
Transform (DWT) applied to network-flow Shannon Entropy’s
time series. The DWT decomposes the entropy into linear
and nonlinear components. We compare two forecasting models
using Long Short Term Memory (LSTM) Networks and Auto-
Regressive Integrated Moving Averages (ARIMA). We evaluate
our mechanism in a large-scale academic wireless network, with
more than 500 access points. LSTM performs up to 10 times
better than ARIMA for predicting the real value of nonlinear
flow-source entropy. Considering the transport protocol entropy,
LSTM is up to 8 times better than ARIMA, and our results
show a high entropy value. LSTM also outperforms ARIMA
concerning the prediction time, which is 42% lower for LSTM’s
worst-case training time than ARIMA'’s best-case training time.

Keywords—Network Traffic, Prediction, ARIMA, Shannon En-
tropy, Network Security, LSTM, Discrete Wavelet Transform

I. INTRODUCTION

The related technology to the Internet of Things (IoT)
continuously evolves and has achieved a maturity level that
contributes to reduce the production-cost of mobile and smart
devices. Several initiatives also encourage the adoption of
IoT solutions, which increases mobile data generation. Recent
studies show that in 2017, 23% of the global Internet traffic
was from smartphones [1]. The mobile traffic over the Internet
traffic ratio is estimated to reach 50% in 2022, with tablets and
machine-to-machine (M2M) communication corresponding to
14% of the data. Shortly, approximately 66% of global net-
work traffic will rely on mobile communication technologies.

The IEEE 802.11 standards, the WiFi technology, are one
of the key enabling technologies for the IoT [2]. These com-
munication technologies are widely deployed and commonly
cover large areas, such as university campi [3]. In such a
scenario, it is essential to study mobile data’s growth due to
its impact on network management and security, especially
when its size and density increase. Thus, traffic analysis is a
crucial tool to set management and designing goals for the
network infrastructure. In this paper, traffic analysis relies on
user-related features identified in the network flows to predict
usage patterns and network behavior [4].
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We propose a network-entropy behavior prediction mecha-
nism for large-scale wireless networks.The entropy is a pow-
erful measurement of randomness degree of an information
system. Entropy allows detecting usage-pattern changes. The
main contributions of this paper are three-fold: i) extracting
information from categorical features, such as IP addresses and
accessed services using the Shannon Entropy; ii) proposing a
noise-resistant approach to predict behavior, as we decompose
each analyzed time series into linear and non-linear com-
ponents; and iii) applying the Discrete Wavelet Transform
(DWT) on time series for traffic prediction. Moreover, we eval-
uate two distinct approaches to predict linear and non-linear
components for each feature, a Neural Network based on the
Long Short-Term Memory (LSTM) and the Auto-Regressive
Integrated Moving Averages (ARIMA).Both methods use few
computational resources, and do not require many parameters
to configure. Furthermore, we compare the performances of
an stochastic model and a neural network model.

Previous works focus on comparing wavelet decomposition
and random forest approaches [5], or on testing the use of
neural networks to predict traffic behavior [6]. Conversely, our
proposal differs on forecasting the entropy as an approach
to predict the degree of dispersion in the network-flows
information. The variation of such dispersion can indicate a
behavior anomaly, as network-flow characteristics are mostly
random, especially features such as destination IP and source
port. Our proposal’s evaluation runs over a dataset containing
real traffic data from the institutional wireless network of
the Universidade Federal Fluminense, which is the largest
federal university in number of undergraduate students in
Brazil. The network daily accounts for more than 5,000 users
simultaneously connected at the peak hours [7]. Results show
that entropy is a reliable metric to predict network-related
categorical features. We highlight that signal decomposition
improves the prediction models since it reduces the training
dataset, delivering minimal prediction errors.

The remainder of the paper is organized as follows. Sec-
tion II presents the related works. In Section III, we define the
problem of network traffic prediction. Section IV presents the
proposed mechanism. Our results are presented in Section V.
Finally, Section VI concludes this work, and presents future
research directions.

II. RELATED WORK

Different prediction techniques have been proposed to iden-
tify and anticipate suspicious traffic, anomalous behaviors, and
network misuse patterns. Other techniques focus on calculating
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the traffic entropy to improve the quality of service that
Internet Service Providers (ISPs) offer. Giotis et al. compare
different approaches using native OpenFlow and SFlow, and
combine both to detect anomalies in Software-Defined Net-
working (SDN) environments, also using the traffic entropy
measurements. They further propose a mechanism to mitigate
anomaly events [8]. Bartos er al. state prioritizing alerts and
correlating alerts are challenging tasks [9]. They claim that the
probability that a recently discovered attack occurs again in a
short period is high. The authors propose a machine-learning
algorithm to estimate the probability that an entity, i.e., a host
or a network, becomes a source of the attack soon. To this end,
the authors create the Future Misbehavior Probability (FMP)
score. The score’s goal is to introduce some knowledge, from
different sources, about a specific entity, network, or host.
The score represents one of these entities’ expected behavior,
based on machine learning, and then assign a value to it,
which predicts future events. In this scenario, the authors
analyze two models: Neural Networks and Gradient Boosted
Decision Tree (GBDT). They initially compare the Brier Score
values, which is a factor in measuring probabilistic forecasts’
accuracy. Both neural networks and the GBDT performed
well, achieving Brier Score values close to zero. The GBDT,
however, performed better.

Wang et al. develop a framework to detect and mitigate
Link-Flooding Attacks (LFAs) in SDN [10]. Such attacks are
hard to detect because the malicious traffic is very similar
to legitimate traffic. The attack aims to saturate the commu-
nication links to degrade the possible paths that lead to a
given service. The proposed framework is composed of three
modules: to detect the LFA, to assess whether the attack is
an LFA, and to mitigate the impact of the attack, performing
traffic engineering to balance traffic throughout the nodes.

Javed et al. present an approach to identify botnet attacks
based on network traffic and temporal features for connected
vehicles. The proposal’s primary goal is to select optimal fea-
tures from input data and analyze the contribution of temporal
features on the attack. The authors also compare Adaboost
method and other machine learning techniques [11].Holgado
et al. present an approach to predict traffic attacks using
IDS alerts. The goal is to predict each step of an attack
using Hidden Markov Model (HMM) detecting similar phases
before specific attack occurs. Viterbi and forward-backward
algorithms are used to detect whether the attack is underway.
[12].

Yang proposes an algorithm to detect network traffic anoma-
lies based on entropy and applying a Support Vector Machine
(SVM) classifier [13]. The proposal focuses on detecting
anomalies in cloud-computing network traffic using entropy
measurements and machine learning. The proposed algorithm
calculates and normalizes the entropy, as well as selects the
best parameters for the SVM classifier. The author uses the
Quantum-behaved Particle Swarm Optimization (QPSO) to
optimize parameter selection.

Unlike previous work, we focus on analyzing the decom-
posed network traffic into linear and non-linear components.
Our analysis compares the forecast error for each component
using both Long Short-Term Memory (LSTM) neural network

and Auto-Regressive Integrated Moving Averages (ARIMA).
Our results show that the entropy of the considered network
traffic primarily behaves as a non-linear signal, and the LSTM
approach is the one that predicts with the lowest error the
network behavior and demands lower training time.

III. TRAFFIC PREDICTION IN LARGE-SCALE
WIRELESS NETWORKS

The network traffic prediction problem relates to modeling
traffic volume between nodes in a network. Network traffic
prediction aims to anticipate network flow characterization
that will happen in future time [14]. Besides forecasting the
traffic volume, the network traffic prediction problem also
deals with protocol classification and protocol distribution
forecasting. The protocol classification problem consists of
a series of protocol types, determining which protocols are
estimated to appear in the network at future steps. An exten-
sion of the problem involves forecasting the distribution of
network packet features. However, the prediction of network
traffic data depends mainly on the data’s statistical nature and
chronological dependence. Self-similarity and the highly non-
linear nature of the network data are statistical characteristics
that particularly harden forecasting traffic. Poisson or Gaussian
distributions insufficiently model the non-linear nature of
the data. Moreover, from the data dependency perspective,
network traffic is characterized by long-term autocorrelation,
which most statistical models fail to capture [14].

Previous work uses mathematical models of the Auto-
Regressive Integrated Moving Average (ARIMA) to predict
traffic growth. The model typically runs for offline traffic
analysis, and, therefore, the complexity of the predictor is
not critical. However, in an online forecasting scenario, sepa-
rating traffic into its components, such as trends, bursts, and
noise, should follow a statistical approach for feasibility and,
then, each component separately predicts the traffic. Neural
networks are also solutions for online prediction of network
traffic, as the artificial neural network finds complex patterns in
incoming data. The wavelet transform is suitable for multiscale
prediction, as it naturally transforms a signal in multiple
resolutions. Applying wavelet transformation enables to reveal
the detailed local trends [15].

IV. HYBRID NETWORK TRAFFIC
PREDICTION MECHANISM

The proposed mechanism conjugates traffic decomposition
using wavelet transform and predictions based on ARIMA
and LTSM neural networks. Our mechanism ingests NetFlow
monitoring data. Thus, we consider the NetFlow 5-tuple flow
definition: source IP, destination IP, source port, destination
port, and transport protocol type. Two main tasks compose
the traffic behavior prediction. The firs separates the sampled
data into files representing 1-day collection each to train the
models. The second calculates the entropy of a 5-tuple. The
entropy is calculated for each 1-hour time window. The flow
processing is divided into three main stages: (1) Shannon
Entropy, (2) Wavelet Transform, and (3) Prediction Models.
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1) Shannon Entropy: The information entropy, also known
as Shannon Entropy, is a measure to analyze the uncertainty
degree or concentration of information distribution. Originally,
entropy was described as a measure on thermodynamics sys-
tems, but Claude Shannon extended it to the information the-
ory in 1948. The concept applies to network traffic prediction
because traffic has characteristics that are essentially random,
such as the destination IP and source port. The entropy is
mathematically expressed as

n

H(X) ==Y (p:)log(pi), )

i=1

in which p; is the probability of ¢-th result for a variable x.

2) Wavelet Transform: The wavelet function decomposes
signals in the frequency domain and is useful for signal
processing in the time domain. Chang et al. state that the
function is an effective time-frequency analysis method after
Fourier analysis [16]. There are two main types of wavelet
transform, the Discrete Wavelet Transform (DWT), and Con-
tinuous Wavelet Transform (CWT).

Wavelet decomposition extracts low-frequency and high-
frequency components because they satisfactorily produce a
local analysis of the time series in the time and frequency
domains. The components are the Component Detailed (CD)
and the Component Approximate (CA). CD is responsible
for generating linear components, whereas CA generates non-
linear components. The extracted components may have infor-
mation that makes predictions more accurate. Some prediction
models have singularities that make them more efficient,
depending on how the signal is processed.

DWT commonly provides a quick tool to remove noise from
a signal. Considering a limited number of coefficients of the
DWT components, it is possible to perform an inverse trans-
form, obtaining a signal with reduced noise. The technique is
useful in analyzing network traffic because, from the point of
view of anomalous detection, the noise can represent an attack
or background traffic.

3) Prediction Models: Auto-Regressive (AR), Moving Av-
erages (MA), Auto-Regressive Moving Averages (ARMA),
and Auto-Regressive Integrated Moving Average (ARIMA)
models are examples of prediction algorithms based on time
series analysis. The AR model is often used in stationary sce-
narios, which means that the scenario has a constant average
over time. It is defined as AR(p), which indicates a regressive
model of order p, as represented in Equation 2. The MA
model is used for smoothing and filtering the noise present in
time series. There are several known variations, and the most
important ones are Simple Moving Average (SMA), Weighted
Moving Average (WMA), and Exponential Moving Average
(EMA). The MA(g) model is defined in Equation 3. [17] The
composition of the two models, AR and MA, in scenarios
where there are auto-regressive (AR) and moving averages
(MA) characteristics, generates the ARMA(p,q) model.

p
Xi=c+ ) 0iXe ite )
i=1

q
Vi=X, - —eiXy_ 3)
=1

The models well fit stationary time series. However, in
several cases, the time series’ are not stationary, and the
ARIMA model is preferable. The model is ARIMA(p,d,q),
in which the parameters p, d, and ¢ represent the order of the
auto-regressive model, the number of necessary differentiation
operations for a series to become stationary, and the order
of the moving averages model, respectively. The variations
of the AR model previously described aims to locate short-
range dependencies, being ideal for the detection of anomalies,
as it is necessary to act quickly to guarantee the accurate
functioning of the network [18].

Another prediction method applied to time series relies
on Recurrent Neural Network (RNN). The main principle
of this method is tracking the dependencies of input values
as a time series. Long short-term memory (LSTM) is a
technique useful for anomaly detection, Intrusion detection
system (IDS), or other signals processing applications, such
as speech recognition. The basic structure of the LSTM is
composed of a node, an input gate, an output gate, and a forget
gate [19]. Input gate controls whether the memory cell updates,
the forget gate controls whether the memory cell resets, and
output controls whether the current cell state’s information is
visible.

Our proposal considers the entropy of network traffic fea-
tures as an input time series. The proposed method applies the
Discrete Wavelet Transform to retrieve both linear and non-
linear components of the time series. For each component,
we apply prediction using both ARIMA and LSTM. The
prediction methods provide the forecasting for each signal
component. Thus, we evaluate the Root Mean Square Error
(RMSE) for each component and prediction method to identify
the best prediction method suited to each component of
every network traffic feature. The RMSE [17] is formalized
in Equation 4. The final forecasting of each feature is the
composition of the linear component’s best prediction and the
best prediction of the non-linear component.

1 n
- Z(predictioni — actual;)?. 4)

i=1

RMSE =

V. RESULTS AND DISCUSSION

We assess the proposed approach using real network traffic
statistics collected from the institutional wireless network of
the Universidade Federal Fluminense using NetFlow proto-
col [7]. The network accounts for an infrastructure of more
than 500 access points, peaking more than 5,000 users si-
multaneously associated in the network, and serves the entire
academic community composed of more than 65,000 students,
teachers, employees, and visitors.

The dataset' contains one-week traffic from the wireless
network of a single campus of the university, namely Praia

!Derived data supporting the findings of this study are available from the
corresponding author on request.
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Fig. 1. Entropy of source IP feature and decomposition using DWT. Original
series and linear and non-linear components extracted.

Vermelha. The data collection was performed between April
17-26, 2018, and generated a 16 GB size file. We use Python
to process the data and to deploy prediction models on a
computer equipped with Intel Quad Core i5-8265U processor
with 1.60GHz of operation, 8GB RAM and 256 GB SSD disk
storage, running Ubuntu 18.04 as operating system.

The evaluation’s first step is to process the dataset to
calculate Shannon Entropy. We calculate the entropy within
1-hour interval for each day. The total size of samples for
the analyzed period is 168. Then, in the second step of the
proposal, we apply the DWT using the Haar wavelet because
it had a shorter run time compared to Daubechies wavelet an
then we decompose the entropy time series into linear and non-
linear components. Figure 1 shows the original time series for
the source IP entropy compared with linear and non-linear
reconstructed signal components after applying the inverse
DWT. For the source IP, we highlight that the entropy values
mainly present a non-linear behavior.

The last step of the proposal is to predict the entropy of
features extracted from the network traffic. For this step, we
train the prediction models with 67% of the input dataset and
predict the following 33%. This split is equivalent to train
over approximately 4-day usage, with a 1-hour entropy time
window. Figure 2 shows the methods used to predict entropy
based on linear components. On the other hand, Figure 3
presents a comparison between predictions using non-linear
components. Both figures consider the source IP feature.

We use the RMSE metric calculated over LSTM and
ARIMA models to compare both methods, as it is an efficient
metric to validate the prediction models. RMSE represents
measure of the average deviation between the observed and
forecast values. When occurs a considerable difference be-
tween these values and squared is applied, this difference
contributes to a high weight in the final prediction model
error.Both scenarios show that LSTM outperforms ARIMA,
as LSTM presents the lowest RMSE value, as shown in
Tables I and II. However, the difference between the models
for predicting the linear component is small, indicating that it
is possible, depending on the sample’s quantity, to use both.

We use a search method that performs tests for each value
of p, d, and ¢, and chooses the best prediction parameter
based on the Akaike Information Criterion (AIC). AIC is an
estimator of out-of-sample prediction error and. Although we
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feature using ARIMA.
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(b) Prediction of linear components extracted from source IP
feature using LSTM.

Fig. 2. Comparison between models ARIMA and LSTM. (a) Prediction
using ARIMA model for the linear components of source IP feature after
the application of DWT. (b) Prediction using LSTM neural network for the
linear components of source IP feature after the application of DWT. Both
models perform well and follow the behavior of the signal, but LSTM follows
the behavior of the original signal better.

search the best parameters for ARIMA, it still performs worse
than LSTM. Table I presents results for the ARIMA prediction.
For each feature, we calculate the code execution time. It is
noteworthy that for both the linear and non-linear cases, the
parameters p, d, and g for the ARIMA model are the same for
the features with the best results for training time and RMSE.
In the linear model cases, the values 2, 1, 1 were stipulated
to predict, while for the non-linear model, the values chosen
by the estimator were 0, 1, 0.

Regarding the prediction with LSTM, Table II shows each
feature’s execution time, the RMSE value, and the maximum
loss of each model epoch. It is possible to verify that the code
execution time was significantly better than ARIMA and that
the RMSE values also had a significant advantage. The linear
component for the destination port feature (dstport) shows the
best results of execution time and global RMSE. Protocol type
feature presents the best performance for the RMSE metric,
considering the non-linear components.

The results of RMSE for both LSTM and ARIMA pre-
dictions are shown in Figure 4. The RMSE for the linear
components are shown Figure 4(a) and non-linear components
are shown in Figure 4(b). It is possible to verify that the LSTM
model outperforms ARIMA in both scenarios with a large dif-
ference, mainly on non-linear prediction. Indeed, it is expected
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Fig. 3. Comparison between models ARIMA and LSTM. (a) Prediction using
ARIMA model for non-linear components of source IP feature after applying
DWT. (b) Prediction using LSTM neural network for non-linear components
of source IP feature after the application of DWT. The ARIMA model diverges
from the original signal and the error tends to increase over time.

TABLE 1
COMPARISON BETWEEN LINEAR AND NON-LINEAR ARIMA PREDICTION

Runtime RMSE AIC Model
(seconds)
srcip (linear) 38s 0.35 -55.07 2,1,1
dstip (linear) 42s 0.31 -40.0 3,1,1
sreport 40s 057 4230 3,11
(linear)
dstport 44s 0.06 -183.66 21,1
(linear)
proto (linear) 44s 0.05 -408.29 2,1,1
sreip 79s 5.51 43.23 0.1,0
(nonlinear)
dstip 45s 322 71.23 11,1
(nonlinear)
sreport 39s 341 175.36 L11
(nonlinear)
dstport 555 0.22 -166.62 0,1,0
(nonlinear)
proto 33s 0.72 356.17 0,1,0
(nonlinear)

that LSTM outperforms ARIMA in forecasting the non-linear
component because of the high adaptability capacity of the
neural networks to deal with non-linear problems. However,
the ARIMA model fails to provide better prediction even to
linear components for all considered features. We emphasize
that the best time performance for the neural network-based
models is due to the algorithms’ optimized implementation
within the Keras library?.

2 Available at https://keras.io/.

TABLE II
COMPARISON BETWEEN LINEAR AND NON-LINEAR LSTM PREDICTION

Runtime Maximum
(seconds) RMSE Loss
srcip (linear) 13.98s 0.22 0.2037
dstip (linear) 12.93s 0.27 0.1638
sreport 12,945 048 02159
(linear)
dstport 12.82s 0.04 02360
(linear)
proto (linear) 13.56s 0.05 0.2252
seeip 13.73s 0.54 0.4240
(nonlinear)
dstip 13.17s 0.59 0.6059
(nonlinear)
steport 13.29s 1.09 05938
(nonlinear)
dstport 13.13s 0.13 03812
(nonlinear)
proto 13.26s 0.09 0.1951
(nonlinear)
038
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(a) RMSE of linear components using LSTM and
ARIMA
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ARIMA

Fig. 4. Comparison of RMSE from linear and non-linear components. a) For
linear components, LSTM outperforms ARIMA, but the RMSE values are
almost equal for both methods applied to all features. b) The RMSE values
for LSTM are significantly lower than ARIMA’s values.

We calculate a Cumulative Distribution Function (CDF) to
compare the probability of the analyzed features to reach
a given Mean Square Error (MSE). The MSE is another
measure of the quality of prediction models, in which lower
values indicate higher accuracy of predictions. Figure 5 show
the CDF of MSE values for each prediction model. The
linear component of the destination port feature using LSTM
presents the lowest predicting error due to this feature’s low
values of entropy, indicating that a variation in this parameter
can be an anomaly.
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Fig. 5. Cumulative probability (CDF) of MSE for each model. (a) CDF
for ARIMA of linear components, (b) CDF for LSTM model of linear
components. ARIMA error uperbound is lower than LSTM uperbound,
indicating that the maximum errors on the ARIMA predictions for the linear
component are lower than these achieved by LSTM.

VI. CONCLUSION

The entropy calculation aims to demonstrate the degree
of randomness that exists in a given system. It proves to
be useful in predicting anomalies and network traffic. Even
having seasonal characteristics, depending on the usage, net-
work traffic presents high dispersion in the statistics related
to IP stack flow features, such as source and destination
IP or source and destination ports. The ARIMA statistical
model analyzes the temporal classifications to understand the
historical data and forecasts traffic based on moving averages
and linear regression. In contrast, the LSTM neural network
model has the advantage of being more efficient in processing
than ARIMA. Our results show that the LSTM neural network
provided low error in predicting both linear and non-linear
components of the entropy time series, while ARIMA provided
a lower upper bound to the error on the linear components
compared to LSTM.We draw our conclusion that a hybrid
method that considers both ARIMA and LSTM is the best
solution for predicting the abnormal behavior of a large
scale network, for two reasons, first because both uses low
computational resources and second, because for non-linear
components the LSTM demonstrated superior performance in
contrast with ARIMA, making possible to forecasting one-step
ahead since the predominant traffic is non-linear, while for
linear components ARIMA is best choice to make predictions
for long-term for non-stationary linear processes. As future

work, we intend to apply a one-class support vector machine
classifier to detect anomalies in predicted future samples of a
time series for real time analysis.
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